Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Michael Hoel
Forord

Denne rapporten er skrevet på oppdrag for "Expertgruppen för miljöstudier" i Sverige. Kontaktpersonen til oppdragsgiver har vært Magnus Allgulin.

Kjell Arne Brekke og Vivian A. Dyb har bidratt til deler av denne rapporten. Videre har Björn Carlén, Cathrine Hagem, Lennart Hjalmarsson, Bengt Kriström og Astri Muren gitt nyttige kommentarer til et tidligere utkast av rapporten.

Undertegnede er alene ansvarig for innholdet i den endelige versjonen.

12 mars 2012

Michael Hoel

Prosjektleder

Vista Analyse AS
Innhold

Forord ... 1

1 Innledning og sammendrag.. 5

2 Optimal global klimapolitikk... 13
 2.1 Oppsummering av kapittel 2 .. 17
 2.2 Appendiks til kapittel 2: Nærmere om optimal karbonpris 17

3 Klimapolitikk uten klimaavtale.. 21
 3.1 Klimapolitikk i følge økonomisk teori ... 21
 3.2 Faktisk klimapolitikk i utvalgte land og regioner ... 22
 3.3 Oppsummering av kapittel 3.. 28

4 Hvorfor og hvordan et lite land kan føre en ambisiøs klimapolitikk......................... 29
 4.1 Ulike ambisjonsnivåer .. 29
 4.2 Ulike utformingar av en ambisiøs klimapolitikk.. 32
 4.3 Oppsummering av kapittel 4.. 39

5 Konsekvenser av en ambisiøs klimapolitikk i et lite land ... 41
 5.1 Direkte virkninger på klimautviklingen ... 41
 5.2 Karbonlekkasje .. 46
 5.3 Mulige virkninger på teknologiutvikling ... 52
 5.4 Betydningen av å være pådriver og forbilde ... 59
 5.5 Mulige virkninger på forhandlinger om en klimaavtale 69
 5.6 Oppsummering av kapittel 5 ... 73
 5.7 Appendiks om karbonlekkasje ... 76

6 Konkluderende merknader ... 81

Referanser ... 85
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Tabeller:
Tabell 5.1 .. 63

Figurer:
Figur 2.1 .. 14
Figur 5.1 .. 44
Figur 5.2 .. 44
Figur 5.3 .. 45
Figur 5.4 .. 45
Figur 5.5 .. 48
1 Innledning og sammendrag

Klimaproblemet er et eksempel på et internasjonalt miljøproblem hvor utslippene fra hvert lite land har svært liten virkning på miljøet. For slike miljøproblemer vil, i følge standard økonomisk teori, et lite land ha ingen eller svake incentiver til å redusere utslipp utover hva det er bundet til gjennom en eventuell internasjonal avtale. Til tross for dette har mange små land (inkludert Norge og Sverige) en strengere klimapolitikk enn hva de er pålagt gjennom internasjonale avtaler. Utredningen drøfter hvorfor dette er tilfelle, og drøfter også konsekvensene av at små land frivillig påtar seg en streng klimapolitikk.

I kapittel 2 gis det en drøfting av prinsippene for en globalt god klimapolitikk. Det er ikke mulig å gi et absolutt svar på hvor ambisiøs en slik politikk bør være. Svaret på dette vil avhenge av en rekke faktorer, herunder hvordan en vurderer kostnadene knyttet til klimaendringer, og hvordan en verdsetter fremtiden i forhold til nåtiden (størrelsen på diskonteringsrenten). I hvert fall i Europa er det ganske bred politisk enighet om at en bør forsøke å unngå temperaturøkninger utover 2-3\textdegree C. Selv med dette målet spriker analysene ganske mye både med hensyn til hvor store utslippsreduksjoner som må til for å oppnå et slikt mål, og ikke minst med hensyn til hvor sterk virkemiddelbruk som må til for å nå et slikt mål. Det er bred enighet blant økonomer om et det viktigste virkemiddelet for oppnå reduserte utslipp er at det blir en pris på utslipp, enten i form av en CO\textsubscript{2}-avgift eller en pris på utslippskvoter. I kapittelet blir det referert til studier som sier noe om hvor høy utslippsprisen må være for unngå temperaturøkning utover 2-3\textdegree C. Anslagene for optimal utslippspris for de nærmeste år varierer fra ca 15 til ca 35 euro per tonn CO\textsubscript{2}, mens tilsvarende anslag for 2050 er fra 60 til 280 euro per tonn CO\textsubscript{2}. Det argumenteres for at det kan være gode grunner for at utslippsprisen de nærmeste årene bør være betydelig høyere enn den nederste delen av intervallet (dvs 15 euro per tonn CO\textsubscript{2}), og at en rimelig vekst i utslippsprisen er av størrelsensorden 2-3\% per år.

Klimaproblemet er et problem som trenger internasjonale avtaler dersom en skal oppnå ambisiøse klimamål. Det er imidlertid en rekke grunner til at det er vanskelig å oppnå god klimaavtaler. Kapittel 3 ser derfor nærmere på en situasjon uten noen internasjonal
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Kapittel 4 drøfter hvordan et lite land kan føre en ambisiøs klimapolitikk. Det sees spesielt på to presiseringer av en ambisiøs klimapolitikk for et lite land. Disse kan litt upresist beskrives som

i) Maksimer samlede utslippsreduksjoner i verden til en gitt kostnad for landet

ii) Gjennomfør landets del av en god internasjonal klimapolitikk

Når det gjelder i), er ambisjonsnivået selvsagt avhengig av hvor store kostnader landet er villig til å påta seg. Uansett hvor store disse kostnadene er, gir i) følgende politikkanbefaling dersom det finnes en internasjonal kvotepris: For en gitt totalkostnad for et lite land reduseres samlede utslipp i verden mest dersom dette landet gjennomfører de og bare de utslippsreduserende tiltakene som er lønnsomme til den internasjonale kvoteprisen. Summen av disse tiltakene i landet vil gi en bestemt kostnad for landet. Det som er igjen av den samlede kostnaden landet er villig til å påta seg brukes i utlandet til å redusere utslipp der gjennom kvotekjøp.

Anbefalingen over gjelder dersom det er et velfungerende internasjonalt kvotemarked, slik at et lands kjøp av kvoter faktisk reduserer utslipp andre steder i verden. Utenom EU-systemet er det per i dag i hovedsak CDM-mekanismen som gir muligheten til å kjøpe kvoter. Det er imidlertid en rekke svagheter ved CDM-systemet. Det er derfor ikke opplagt hvilken terskel for utslippsspris en skal bruke for å vurdere hvor mye en vil redusere innenlandske utslipp med.

Utgangspunkt ii) "Gjennomfør landets del av en god internasjonal klimapolitikk" kan være et prinsipp som er motivert av moralsk art: "Vi bør oppføre oss skikkelig uansett
hvordan andre oppfører seg”. En kan også argumentere for et slikt prinsipp basert på "pådriverrolle” eller "forbildeeffekt”, noe som blir diskutert senere i utredningen.

I kapittelet blir det argumentert for at en konkret utforming av et prinsipp av typen “gjennomfør landets del av en god internasjonal klimapolitikk” kan være å ta utgangspunkt i det forløpet av en utslippspris (avgift eller kvotepris) som må til for å nå et ambisiøst klimamål. Å “gjennomføre landets del av en god internasjonal klimapolitikk” innebærer at det er denne prisen som bør gjelde i alle beslutninger i landet. I så fall blir den samlede innenlandske utslippsreduksjonen bestemt ved at alle utslippsreducerende tiltak som er lønnsomme til dette prisforløpet blir gjennomført, mens tiltak som ikke er lønnsomme til dette prisforløpet ikke blir gjennomført. Hvis resten av verden fulgte samme prinsipp ville vi få et totalresultat som var likt med det som ble definert som en god internasjonal klimapolitikk. Selv om det enkle prinsippet over kan virke fornuftig ved første øyekast, er det ikke helt uproblematisk. Spesielt vil en ensidig gjennomføring av “landets del av en god internasjonal klimapolitikk” for et lite land gi landet et annet resultat i form av kostnader og næringsstruktur enn hvis alle andre land også hadde fulgt samme prinsipp.

Dersom et lite land ensidig kutter sine utslipp vil den direkte virkningen på klimautviklingen være tilnærmet lik null. I kapittel 5 blir det vist at virkningen også vil være ubetydelig selv om f eks USA eller EU gjennomfører betydelige utslippskutt. Der redegjøres det for virkningen av utslippskutt for de landene som har påtatt seg utslippsbegrensninger i Kyoto-avtalen (Kyoto-landene), som i dag står for ca 30 % av de globale CO₂-utslippene. Det antas at utslippene i denne gruppen av land reduseres med 25 % innen 2025, med 80% innen 2050, og med 98 % innen 2100. Utslippene i denne gruppen av land reduseres ytterligere og er nær null gjennom det 22. århundre. Selv med slike dramatiske utslippskutt blir temperaturokkningen bare 0,18 °C lavere i 2100 og 0,22 °C lavere i 2200 enn den ville blitt uten utslippskuttene. Dette gjelder under forutsetning av at utslippskuttene i disse landene ikke påvirker utslippene i resten av verden.

På bakgrunn av ovenstående blir det i resten av kapittel 5 sett på mulige indirekte virkninger av en ambisiøs klimapolitikk i et lite land.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

En mulig viktig indirekte virkning av ensidige utslippskutt er at slike kutt kan ha betydning for utviklingen av ny klimavennlig teknologi. Streng klimapolitikk i ett land kan gi raskere utvikling av klimavennlig teknologi i dette landet. På grunn av kunnskapsoverføringer mellom land kan dette også gi en positiv utvikling av klimavennlig teknologi også i andre land. Dette kan igjen gi lavere utslipp i andre land, siden kostnadene knyttet til utslippsreduksjoner vil gå ned som følge av den nye teknologien.

Selv om en slik teknologieffekt kan være til stede, er det vanskelig å vite hvor stor den er. I en studie diskutert i kapittelet konkluderer det med at denne effekten i noen tilfeller kan være tilstrekkelig stor til at den mer enn oppveier den motsatte virkningen gjennom karbonlekkasje. Et viktig forhold som ikke fanges opp av empiriske studier av dette fenomenet er at virkningen kan være diskontinuerlig: Med betydelig sannsynlighet vil teknologiutviklingen i landet med streng klimapolitikk ha beskjeden betydning for utslippene i andre land. Men det er en positiv sannsynlighet for at det i landet med streng klimapolitikk kommer et teknologisk gjennombrudd som kan bety ganske mye for utslippsutviklingen i andre land.

I det meste av den økonomiske litteraturen om klimapolitikk er det lagt til grunn at alle land er rasjonelle aktører som handler ut fra egeninteresse. I den senere tid er det en betydelig litteratur som viser at denne forutsetningen i mange situasjoner passer dårlig.
for adferden til enkeltpersoner, og da kanskje også for land. Dette er utførlig diskutert i kapittelet. I litteraturen om sosiale preferanser er det gitt en god dokumentasjon på at individer ofte vil gjengjelde gode handlinger med gode og dårlige med dårlige. Imidlertid er detaljene om hvorfor adferden er slik fortsatt gjenstand for betydelig diskusjon. Studier av individens adferd gir et dårlig grunnlag for å trekke sterke konklusjoner om adferden til nasjoner, derfor er nettopp de underliggende mekanismene viktige. De ulike forklaringene har ulike implikasjoner for hva som er effekten av ensidige tiltak fra en spiller, ikke minst om det er snakk om et spill mellom nasjoner. Teorier gir heller ingen antydning om hvor sterke effekter av denne typen kan være.

I kapittelet er det også diskutert mulige årsaker til at det er vanskelig å oppnå en god internasjonal klimaavtale, og hvilken betydning det kan ha at ett eller flere land uavhengig av en avtale fører en ensidig ambisiøs klimapolitikk. Konklusjonen fra drøftingen er at ensidige utslippskutt fra en liten gruppe av land ikke nødvendigvis bidrar til at flere land slutter seg til en internasjonal klimaavtale. Tvert i mot kan det motsatte være tilfelle: Når noen land velger store utslippskutt uavhengig av utfallet av klimaforhandlinger, kan dette styrke insentivet til å være gratispassasjer, og det kan bli vanskeligere å oppnå et samarbeid mellom mange land. En bør imidlertid være forsiktig med å trekke for bastante konklusjoner. Drøftingen er basert på en teori om samarbeid som er mye brukt i litteraturen; imidlertid finnes det også andre teorier. En kan ikke utelukke at enkelte andre av disse teoriene kan gi andre resultater vedrørende konsekvensen av at noen land ensidig kutter sine utslipp uavhengig av hva andre land gjør.

Kapittelet gir også en kort diskusjon om hvordan ensidige og ubetingede utslippskutt fra ett land kan påvirke utfallet av forhandlinger, gitt at det blir en fremforhandlet klimaavtale. Det konkluderes med at ensidige og ubetingede utslippskutt fra en gruppe av land som regel vil påvirke utfallet av klimaforhandlinger. Utfallet vil typisk påvirkes i en retning som innebærer at landene som gjennomfører ensidige og ubetingede utslippskutt før avtalen kommer på plass kommer dårligere ut enn de ville gjort uten slike utslippskutt. Når det gjelder virkningen av ensidige utslippskutt på de fremforhandlede samlede utslipp, konkluderes det med at det ikke er opplagt i hvilken retning de vil påvirkes.
Klimapolitikk oglederskap – hvilken rolle kan et lite land spille?

Kapittel 6 gir noen avsluttende merknader. Klimapolitikken til et lite land har neglisjerbar direkte virkning på klimautviklingen. Dette faktum, kombinert med at det er kostnader knyttet til å føre en klimapolitikk som er mer ambisiøs enn internasjonale avtaler tilsier, reiser spørsmålet om hvorfor et lite land skulle ønske å føre en slik ambisiøs politikk. Det er to hovedgrunner til at et lite land kan ønske å føre en ambisiøs politikk til tross for kostnadene og til tross for tilnærmet null direkte klimavirkning:

a) En kan mene at en ensidig ambisiøs klimapolitikk kan ha indirekte virkninger slik at den bidrar til å øke sannsynligheten for at også andre land etter hvert vil føre en mer ambisiøs klimapolitikk

b) En kan mene at et rikt land har en moralsk plikt til å føre en ambisiøs klimapolitikk, uavhengig av om andre land gjør det samme eller ikke

Det følger av drøftingen over at mulige indirekte virkninger av en ensidig ambisiøs klimapolitikk er svært usikre. Den indirekte virkningen gjennom utviklingen av klimavennlig teknologi er kanskje den minst usikre, selv om størrelsen også av den er usikker. Hvis en har stor tiltro til denne indirekte virkningen, kan dette være av betydningen for utformingen av klimapolitikken. En ambisiøs klimapolitikk i form av en høy generell utslippspris er det som tradisjonelt blir sett på som den mest kostnadseffektive utformingen av en ambisiøs klimapolitikk. Men hvis en viktig årsak til at en fører en ambisiøs klimapolitikk er et håp om teknologiutvikling som påvirker utslippene i andre land, kan det være grunn til å avvike fra en generelt utformet klimapolitikk i form av lik utslippspris for alle. For å fremme teknologiutviklingen kan det være grunn til å vri politikken i en retning som gir større sannsynlighet for utvikling av ny klimavennlig teknologi enn en generelt utformet klimapolitikk gir.

Selv om en har liten tro på at det finnes indirekte virkninger av typen drøftet over, kan et land ønske å føre en ambisiøs klimapolitikk av mer prinsipielle grunner, jfr. punkt b) over. I så fall er det nærliggende at den ambisiøse politikken utformes på en kostnadseffektiv måte med lik utslippspris for alle. Selv om årsaken til å føre en ambisiøs klimapolitikk først og fremst er av prinsipiell art, kan en håpe og tro at indirekte virkninger er til stede, slik at den ambisiøse politikken kan påvirke utslippene også i andre land. I så fall kan dette være en grunn til å avvike fra den generelt utformede og kostnadseffektive politikken. Dersom en f. eks. tror at det er en mulig
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

positiv indirekte virkning gjennom teknologiutvikling, er det også i dette tilfelle grunn til å vri politikken i en retning som gir større sannsynlighet for utvikling av ny klimavennlig teknologi enn en generelt utformet klimapolitikk gir.
2 Optimal global klimapolitikk

I tillegg til kostnadseffektivitet må innsatsen for å begrense utslippene stå i et rimelig forhold til gevinsten av disse tiltakene. Hvis vi først ser bort fra de dynamiske aspektene ved klimaproblemet, kan vi illustrere denne avveiningen som følger. La kostnadene ved å redusere utslipp fra \(x^0 \) til \(x \) være \(C(x^0-x) \), som antas å være en stigende funksjon. Videre antas marginalkostnadene \(C'(x^0-x) \) av å redusere utslipp å være stigende: Jo mer utslippene allerede er redusert, jo mer koster ytterligere reduksjoner. Denne marginalkostnadsfunksjonen er tegnet som den rette linjen \(C' \) i figur 2.1, hvor \(x^0 \) er utslippene uten noen utslippsreducerende tiltak (ofte kalt ”Business as Usual” – BaU – utslippet). Etter hvert som utslippene \(x \) reduseres, blir det mer og mer kostbart med ytterligere reduksjoner. Kurven \(C' \) stiger derfor når vi beveger oss fra høyre mot venstre.

Anta videre at miljøulempene ved utslippene kan beregnes i samme verdier som andre kostnader, og er gitt ved en stigende funksjon \(M(x) \). Den marginale miljøkostnaden \(M'(x) \) uttrykker hvor mye miljøkostnaden øker med for en enhets økt utslipp når utslippet allerede er \(x \). Det er vanlig å anta både for klimaproblemet og mange andre miljøproblemer at denne marginalkostnaden er større jo større utslipp en allerede har. Dette betyr at kurven for \(M'(x) \) er stigende som i figur 2.1.

Standard økonomisk analyse tilsier at optimale utslipp er gitt ved det utslippsnivået som minimerer summen av kostnadene knyttet til å redusere utslippene og miljøkostnadene.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

av utslippene. M.a.o. er de optimale utslippene gitt ved den x-verdien som minimerer \(C(x^0-x)+M(x) \). Rett frem regning gir at denne x-verdien er gitt der

\[
(2.1) \quad C'(x^0 - x) = M'(x)
\]

dvs der marginalkostnaden av å redusere utslipp er lik den marginale miljøkostnaden.

Optimumsløsningen er illustrert i figur 2.1. Her er \(v^* \) marginalkostnaden av utslippsreduksjoner (ved det optimale niutslippsnivået \(x^* \)). Variablene \(x^* \) og \(v^* \) vil avhenge av funksjonene \(C \) og \(M \) som representerer teknologi og preferanser.

![Diagram](image)

Figur 2.1

Klimaendringer avhenger ikke direkte av utslipp, men av akkumulerte utslipp som påvirker mengden av klimagasser i atmosfæren. Dette innebærer at miljøkostnaden av dagens utslipp utgjøres av klimakostnadene for all fremtid av utslipp i dag. Som vist i appendikset til dette kapittelet innebærer dette at den marginale miljøkostnaden som regel vil øke over tid, selv om utslippsnivået er konstant. I appendikset konkluderes det med at med at prisen på utslipp \(\nu_t \) – hvor \(t \) står for tid - i et optimalt forløp vil stige over
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

tid med en årlig rate et sted i intervallet 1-6%. Tall i nedre del av intervallet virker mer plausible enn i øvre del.

Hva kan en si om selve nivået på en utslippspris som skal stige med 1-3% per år? Svaret på dette vil avhenge blant annen av hva en forutsetter om

- befolkningssutvikling
- generell produktivitetsvekst
- utviklingen av lavutslippsteknologier
- sammenhengen mellom drivhusgasser i atmosfæren og klimautviklingen
- kostnader knyttet til klimaendringer
- skranke på maksimal akseptert temperaturøkning
- størrelsen på diskonteringsrenten

Det finnes en rekke utredinger som beregner optimale utslipp og tilhørende utslippspris, se f eks Hoel et al. (2009) for en oversikt. De ulike utredningene gir ganske sprikende resultater, grunnet ulike forutsetninger om punktene over. Her vil vi spesielt trekke frem én slik utredning, nemlig Nordhaus (2008). I denne analysen brukes forutsetninger som innebærer at kalkulasjonsrenten frem til 2100 i snitt blir 4,1%. Når det i optimaliseringen kreves at den globale temperaturøkningen ikke skal overstige 2 °C, innebærer en globalt optimal klimapolitikk at globale utslipp av CO₂ (utenom avskoging) kulminerer ca i 2035 og deretter avtar med en økende rate, i snitt 5% per år i resten av århundret. Den tilhørende utslippsprisen starter på ca 16,5 dollar (ca 12 euro) per tonn CO₂ i 2010 og stiger med ca 3,2% per år i resten av århundret. Startverdien i 2010 virker svært lav. Imidlertid vil en vekstrate på 3,2% per år gi en utslippspris i 2050 på ca 42 euro og i 2100 på ca 200 euro. Også disse tallene kan virke lave, og avhenger av en viktig forutsetning i analysen til Nordhaus: Det antas at til en kostnad på ca 200 euro per tonn CO₂ kan en eliminere alle utslipp av CO₂. Noen vil mene at dette er for optimistisk. Noen har også argumentert for at Nordhaus forutsetter urealistisk lave
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Klimakostnader1; med høyere klimakostnader ville den optimale utslippsprisen i nær fremtid vært høyere.

I analysen til Nordhaus er veksten i utslippsprisen forholdsvis høy. Hvis kalkulasjonsrenten hadde vært lavere enn hva Nordhaus antar (4,1\%) ville også veksten i utslippsprisen vært lavere. Det finnes også andre grunner til at en fornuftig global klimapolitikk vil innebære en lavere vekstrate for utslippsprisen: For det første kan det være vanskelig eller umulig politisk å binde seg til en raskt økende utslippspris. Hvis private aktører tviler på at prisen øker så raskt som politikerne annonserer, kan de gjennomføre for få langsiktige tiltak. Dette tilsier en høyere initial pris og en langsommere veksttakt. For det andre har enkelte argumentert for at det særlig i en tidlig fase av helt ny teknologi er viktig med offentlig støttetiltak (se bl.a. Gerlagh et al., 2008). Dersom støttemekanismene for teknologiutvikling er imperfekte, kan dette avhjелpes med en høyere utslippspris enn hva som ville vært optimalt dersom er hadde perfekte virkemidler rettet mot teknologiutvikling. Også dette argumentet taler for en høyere initial pris og en langsommere veksttakt.

Vi har gitt noen argumenter for at den optimale initiale utslippsprisen kanskje bør være noe høyere enn hva Nordhaus’ analyse gir, samt at veksten bør noe være lavere. Et eksempel på et slikt prisforløp er en pris på 50 euro per tønn CO\textsubscript{2} i 2015 og en vekst på 2\% per år. Dette gir en pris på 100 euro i 2050 og snaut 270 euro i 2100. En slik prisbane vil altså ligge over den som Nordhaus beregner i hele dette århundre. Med forutsetningene som Nordhaus bruker vil en global klimapolitikk basert på en slik utslippspris helt sikkert sikre at den globale temperaturøkningen ikke overstiger 2 °C.2

I Hoel et al. (2009) har vi sett på en rekke andre studier i tillegg til Norhaus. Alle disse gir analyser av optimal klimapolitikk som innebærer at global temperaturøkning ikke overstiger 2-3 grader. Anslagene for optimal \(v_t \) for de nærmeste år varierer fra ca 15 til ca 35 euro per tønn CO\textsubscript{2}, mens tilsvarende anslag for 2050 er fra 60 til 280 euro per tønn CO\textsubscript{2}.

1 Se bl.a. Hanemann (2008).

2 I denne analysen er det antatt at en slik global utslippspris innføres allerede i 2010. Jo senere en starter med en global utslippspris av størrelsesorden over, jo høyere må prisbanen ligge for å unngå temperaturøkninger over et bestmet nivå.
2.1 Oppsummering av kapittel 2

Kapittelet har gitt en drøfting av prinsippene for en globalt god klimapolitikk. Det er ikke mulig å gi et absolutt svar på hvor ambisiøs en slik politikk bør være. Svaret på dette vil avhenge av en rekke faktorer, herunder hvordan en vurderer kostnadene knyttet til klimaendringer, og hvordan en verdsetter fremtiden i forhold til nåtiden (størrelsen på diskonteringsrenten). I hvert fall i Europa er det ganske bred politisk enighet om at en bør forsøke å unngå temperaturekninger utover 2-3°C. Selv med dette målet spriker analysene ganske mye både med hensyn til hvor store utslippsreduksjoner som må til for å oppnå et slikt mål, og ikke minst med hensyn til hvor sterk virkemiddelbruk som må til for å nå et slik mål. Det er bred enighet blant økonomer om at det viktigste virkemiddetto for oppnå reducterte utslipp er at det blir en pris på utslipp, enten i form av en CO₂avgift eller en pris på utslippskvoter. I kapittelet blir det referert til studier som sier noe om hvor høy utslippsprisen må være for unngå temperaturekning utover 2-3°C. Anslagene for optimal utslippspris for de nærmeste år varierer fra ca 15 til ca 35 euro per tonn CO₂, mens tilsvarende anslag for 2050 er fra 60 til 280 euro per tonn CO₂. Det argumenteres for at det kan være gode grunner for at den globale utslippsprisen de nærmeste årene bør være betydelig høyere enn den nederste delen av intervallet (dvs 15 euro per tonn CO₂), og at en rimelig vekst i utslippsraten er av størrelsensorden 2-3% per år.

2.2 Appendiks til kapittel 2: Nærmere om optimal karbonpris

La mengden av CO₂ i atmosfæren (utover "naturlig mengde") på et tidspunkt t være gitt ved A_t. I enkle økonomiske analyser antas ofte samanhengen mellom utslipp og beholdning (x og A) å være gitt ved

\[A_{t+1} = (1 - \delta)A_t + x_t \]

Her er δ en depresieringsfaktor som sier hvordan CO₂ gradvis flyttes fra atmosfæren til andre karbonlagre (særleg havet). I virkeligheten er samanhengen mellom x og A betydelig mer komplisert enn den som er gitt ved ligningen over, men denne ligningen er tilstrekkelig for å forklare poengene i denne fremstillingen. Med vår forenkling kan δ anslås til 0,5-1%, dvs. 0,5-1% av beholdningen av klimagasser (utover langsiktig likevekt) "forsvinner" fra atmosfæren hvert år.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Miljøskaden avhenger ikke direkte av utslippene, men av beholdningen av klimagasser i atmosfæren\(^3\). Vi lar derfor \(M\) avhenge av \(A\) i stedet for \(x\). Det kan da vises at optimumsbetingelsen i stedet for (2.1) er gitt ved

\[
C'(x_0 - x_i) = v_t
\]

Hvor

\[
v_t = \sum_{z=0}^{\infty} (1+r)^{-z} (1-\delta)^z M'(A_{t+z})
\]

Variablen \(v_t\) gir uttrykk for miljøkostnaden av et ekstra tonn utslipp, og kalles på engelsk ofte "the social cost of carbon". Ligning (2.4) har en rett frem tolkning: Utslipp av 1 tonn CO\(_2\) i atmosfæren i periode \(t\) gir et tillegg til CO\(_2\) i atmosfæren i år \(t+z\) lik \((1-\delta)^z\). Den marginale miljøkostnaden av dette i år \(t+z\) er \(M'(A_{t+z})\), slik at den marginale kostnaden av 1 tonn utslipp i år \(t\) er lik \((1-\delta)^z M'(A_{t+z})i\) år \(t+z\), eller \((1+r)^{-z} (1-\delta)^z M'(A_{t+z})\) når vi neddiskonterer til år \(t\) med diskonteringsrenten \(r\) (typisk av størrelsesorden 2-5\%). Summen av disse neddiskonterte marginalkostnadene for alle fremtidige år er gitt ved (2.4).

Det er av og til mer hensiktsmessig å bruke kontinuerlig tid enn diskrete tidsperioder som vi har gjort over. Motstykket til (2.4) i kontinuerlig tid er

\[
v(t) = \int_0^{\infty} e^{-(r+\delta)z} M'(A(t+z))dz
\]

Dette gir følgende vekstrate for \(v(t)\):

\[
\frac{dv(t)}{v(t)} = r + \delta - \frac{M'(A(t))}{v(t)} < r + \delta \text{ for } M' > 0.
\]

Hvis \(M'\) hadde vært en konstant, ville \(v_t\) også vært konstant, lik \(M''(r+\delta)\). Det er imidlertid to grunner til at \(M'\) øker over tid. For det første kan det være grunn til å tro at

\[^{3}\text{Miljøskaden avhenger av klimaendringene, som igjen avhenger på en ganske kompleks måte av beholdningen av klimagasser i atmosfæren. Vi forenkler dette ved å la miljøskaden avhenge direkte av beholdningen av klimagasser i atmosfæren.}\]
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

skaden forårsaket av en gitt temperaturøkning er verre jo høyere temperaturen er i utgangspunktet. En kan altså mene at en økning i jordas middeltemperatur fra 2 til 2,5 grader forårsaker betydelig mer skade enn en temperaturøkning fra 1,5 til 2 grader. Siden atmosfærekonsentrasjonen av klimagasser og temperaturen vil være stigende over tid (i hvert fall i de nærmeste 50-100 år) betyr dette at M’ vil være større jo større A er, noe som gjør at v₁ vokser med t.

Den andre grunnen til at M’ vokser over tid er at inntekt per innbygger kan forventes å fortsette å øke over tid. Dette innebærer at den relative verdsettingen av goder som ikke øker i omfang eller kvalitet over tid vil stige i forhold til goder som vi får mer av over tid. Spesielt vil økt inntekt øke betalingsviljen for å unngå/begrense klimaendringer. Hvis inntektene øker med 1-1,5% per år, er det ikke urimelig å anta at M’ av denne grunnen vil øke med minst 1-1,5% per år.

Dersom M’ vokser med en konstant rate per år, vil også v₁ vokse med den samme konstante raten. Resonnementet over tilsier derfor at v₁ vil vokse med minst 1% per år. Når det gjelder en øvre grense for veksten i v₁ følger det av uttrykket over at såfremt M’(A) ikke avtar over tid vil veksten i v₁ ikke overstige raten $r + \delta$. Med tallene antydet over gir dette en øvre grense på veksten i v₁ på 6% per år.

Vi kan konkludere med at den optimale globale prisen på utslipp v₁ vil stige over tid med en årlig rate et sted i intervallet 1-6%. Tall i nedre del av intervallet virker mer plausible enn i øvre del.

4 Se Hoel og Sterner (2007) for en nærmere drøfting.

5 For det spesiell tilfellet at en ikke bryr seg om mengden av klimagasser i atmosfæren så sant den er under en fastsatt øvre grense, vil veksten i v₁ bli akkurat raten $r + \delta$.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

3 Klimapolitikk uten klimaavtale

Klimaproblemet er opplagt et problem som trenger internasjonale avtaler dersom er skal oppnå utslippsreduksjoner som monner. Men det er vanskelig å få på plass forpliktende avtaler som respekteres. Hvert land, i varierende grad i forhold til hvor rammet de vil bli av et varmere og ustabil t klima, kan være tjent med at alle land samarbeider om å redusere klimagassutslipp. Men de kan komme enda bedre fra det ved at andre land samarbeider om å redusere sine utslipp og at ens eget land ikke gjør noe. Dette gratspessasjerproblemet kan gjøre det vanskelig å få på plass bindende internasjonale avtaler som omfatter mange land. Vi skal derfor i dette kapittelet se på hva teori og empiri sier om klimapolitikk i fravær av en internasjonal klimaavtale (eller med en avtale med begrenset omfang og ambisjonsnivå).

3.1 Klimapolitikk i følge økonomisk teori

I kapittel 2 drøftet vi egenskaper til en globalt optimal klimapolitikk. Hovedpoenget var at marginalkostnaden av å redusere utslipp skulle være lik på tvers av land, og at denne felles marginalkostnaden på ethvert tidspunkt skulle være lik en verdsetting v_t av reduserte klimagassutslipp. Vi antydet at for en forholdsvis ambisiøs global klimapolitikk (temperaturøkning ikke mye over 2 grader) ville v_t i nærmest fremtid kanskje være av størrelsesorden 50 euro per tonn CO$_2$, stigende til ca 100 euro per tonn CO$_2$ i år 2050. I utledningen av v_t inngikk miljøskader i alle fremtidige år for hele verden.

Standard økonomisk teori legger som regel til grunn at dersom ingen internasjonal klimaavtale finnes, vil hvert land opptre i snever egeninteresse (denne forutsetningen blir nærmere drøftet i avsnitt 5.4). Hvert land tar andre lands utslipp som gitt, og velger egne utslipp basert på skader på eget land av disse utslippene. Mens v_t i kapittel 2 var summen av skadene for alle land, tar altså et enkelt land bare hensyn til den delen av v_t som angår landet selv. Dette vil nødvendigvis bare være en beskjeden del av v_t.

La skaden for land i være $\alpha_i v_t$, hvor $\Sigma \alpha_i = 1$. I følge teorien over skulle vi vente at land i vil velge sine utslipp slik at marginalkostnaden av utslippsreduksjoner er lik $\alpha_i v_t$. Sagt med andre ord: Alle utslippsreducerende tiltak som koster mindre enn $\alpha_i v_t$ per tonn CO$_2$ blir gjennomført, mens ingen tiltak som koster mer enn $\alpha_i v_t$ blir gjennomført.
Selv om klimaskader kan variere sterkt mellom land, kan en grov approksimasjon være at hvert lands andel av totalskaden er lik landets andel av verdens BNP. EUs andel av verdens BNP er ca 26%, som i så fall tilsier at $\alpha_{EU} = 0,26$. Tilsvarende er Sveriges andel av verdens BNP ca 0,7%, som i så fall tilsier at $\alpha_{Sverige} = 0,007$. Med $v_{2011}=50$ euro per tonn CO$_2$ og $v_{2050}=100$ euro per tonn CO$_2$ vil vi altså vente at EU bare påtar seg utslippsreduserende tiltak i dag som koster mindre enn 13 euro per tonn CO$_2$, og frem mot år 2050 etter hvert tiltak som koster opp mot 26 euro per tonn CO$_2$. Tilsvarende for Sverige (hvis vi ser bort fra at Sverige er bundet av EUs felles politikk): Sverige vil bare påta seg klimatiltak i dag som koster mindre enn 0,35 euro per tonn CO$_2$, og frem mot år 2050 tiltak som koster opp mot 0,7 euro per tonn CO$_2$.

I neste avsnitt blir det vist at i hvert fall noen land og regioner har en betydelig strengere klimapolitikk enn teorien over skulle tilsi.

3.2 Faktisk klimapolitikk i utvalgte land og regioner

I dette avsnittet skal vi se nærmere på klimapolitikken i noen utvalgte land og regioner, nærmere bestemt Norge, Sverige, EU og California. Beskrivelsene i dette kapittelet er basert på følgende kilder:

- http://www.climatechange.ca.gov/
- http://www.sweden.gov.se/sb/d/3188
- Svensk klimatpolitik, SOU 2008:24

(www.sweden.gov.se/content/1/c6/09/96/94/8393cd02.pdf)
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Norge

Kyotoavtalen (1990)

Klimaforliket (2008)

Gjennom Klimaforliket av 2008, fastsatte Stortinget ytterligere mål for klimapolitikken i Norge:

- Norge skal skjerpe sin Kyotoforpliktelse med 10 prosentpoeng
- Norge skal fram til 2020 påta seg en forpliktelse om å kutte de globale utslippene av klimagasser tilsvarende 30 prosent av Norges utslipp i 1990.
- Norge skal satse på å bli karbonnøytralt innen 2030.
- 2/3 av utslippsreduksjonene skal skje nasjonalt; dette svarer til at de norske klimagassutslippene skal reuseres med 15 til 17 millioner tonn innen 2020.

Disse målene vil forsøkes nådd gjennom følgende virkemidler:

- Statlige avgifter på autodiesel og bensin settes opp
- Forskning på fornybar energi trappes kraftig opp
- Det norske bidraget til å stoppe avskoging i utviklingsland økes
- Norge skal gjenoppta forhandlingene med Sverige om grønne sertifikater
- Økte bevilgninger til Jernbanen
- Belønningsordningen for storbyer som satser på kollektivtransport blir fordoblet
- Bevilgninger til et demonstrasjonsprogram for utvikling av havvindmøller og andre umodne energiteknologier
- Den offentlige bilparken skal være klimanøytral innen 2020
- Hydrogenbiler skal få slippe gratis gjennom bomringen og ha gratis offentlig parkering
- Oljefyring til oppvarming av bygg skal fases ut gjennom støtteordninger og lovforbud, og energibruken i bygg skal ned
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Sluttrapporten fra Klimakur 2020 dekker følgende punkter:

- vurderer forventet kvotepris i 2012, 2015 og 2020
- gjennomgår internasjonale mål og virkemidler i klimapolitikken
- vurderer behovet for nye eller endrede virkemidler i klimapolitikken

Et utgangspunkt i Klimakur 2020 er at de norske klimagassutslippene skal reduseres med 15 til 17 millioner tonn innen 2020 (som er en del av målene i Klimaforliket – se over).

Fæhn (2010) har beregnet at marginalkostnaden av utslippsreduksjoner ved en kostnadseffektiv oppnåelse av Norges nasjonale mål i 2020 er 190 Euro per tonn CO₂.

Norge har i dag en CO₂-avgift for de fleste sektorer som ikke er dekket av EUs kvotesystem. Avgiften varierer fra kr 191 til 384 (ca 25-50 Euro) per tonn CO₂ (tall for 2012). I tillegg betaler petroleumssektoren en avgift på kr 156-209 (ca 20-27 Euro) per tonn CO₂ (avhengig av brenseltype) i tillegg til kvoteprisen (denne sektoren er inkludert i EUs kvotesystem).

Sverige

Sverige har ambisjoner om å bli et forbilde innen klimaarbeid. Deres klimapolitikk har de senere årene blitt stadig mer knyttet opp mot EUs klimapolitikk og internasjonalt samarbeid innen klimaarbeid.

Målene for den svenske klimapolitikken fram mot år 2020 er for øvrig følgende:
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

- minst 50% av den svenske energien skal være fornybar
- utslippene av drivhusgasser i Sverige for de sektorer som ikke inngår i EUs system for utslippsrettigheter skal reduseres med 40% sammenliknet med 1990
- energieffektiviteten skal økes med 20%
- minst 10% fornybar energi i transportsektoren

En femtedel av utslippsreduksjonen er allerede oppnådd, mens fire femtedeler gjenstår.
Virkemidler for å nå målet er blant annet:

- endrede skatter og skjerpede økonomiske virkemidler (her er energi- og kulldioksidbeskatningen av fossilt brensel blant de viktigste)
- gjennomføring av felles EU-beslutninger
- utslippsminskninger gjennom grønne investeringer i utviklingsland eller innsats i andre EU-land

Sveriges visjon er at landet innen 2050 skal ha en bærekraftig og ressurseffektiv energiforsyning uten nettoutslipp av drivhusgasser til atmosfæren.

Målet tenkes nådd gjennom tre handlingsplaner presentert av regjeringen:

- en fossiluavhengig transportsektor
- økt energieffektivisering
- økt bruk av fornybar energi

Sverige har en CO2-avgift som i dag er på 1050 svenske kroner (ca 115 Euro) per tonn CO2 til husholdninger og tjenester, men bare 25% av dette til industrien utenom kvotesystemet.

EU
Kyotoprotokollen krever at de 15 landene som utgjorde EU på det tidspunktet Kyotoprotokollen ble underskrevet reduserer sine samlede CO2 utslipp i perioden 2008-

6 EU-landene er blitt enige om en utslippsreduksjon på 20% frem mot 2020 i sitt handelssystem (mer om dette under).
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

2012 til 8% under 1990-nivået. Ifølge overvåkning og prognoser av CO₂ utslippet er EU på god vei til å nå dette målet.

Initiativ som tas av EU-landene for å redusere klimagassutslipp inkluderer følgende:

- Stadig forbedre energieffektiviteten i husholdningene
- Gi mandater til økt bruk av fornybar energi, slik som vind, solar energi, bioenergi etc
- Støtte utviklingen av CCS (Carbon Capture and Storage)
- Igangsetting av European Climate Change Programme i 2000

I tillegg vil EU utvikle en omfattende tilpasningsstrategi for EU som vil bedre Europas motstandsstyrke til klimaendringer.

EU har lenge vært en pådriver i internasjonale forhandlinger om klima. Disse har ledet til to FN-avtaler innen klimaarbeid - the UN Framework Convention on Climate Change (UNFCCC) i 1992 og den omtalte Kyotoprotokollen i 1997.

Prisen på kvotene i EUs kvotesystem er i dag (10. januar 2012) ca 7 Euro per tonn CO₂, men har i store deler av perioden 2008 til 2011 vært betydelig høyere.

California

Gjennom the California Global Warming Solutions Act of 2006 vedtok guvernør Schwarzenegger og the State Legislature at statens drivhugassutslipp i 2020 skal være
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

på 1990-nivå. I tillegg er det etablert et mål om å redusere utslippene til 80% under 1990-nivået innen 2050.

For å nå disse målene ble det i 2005 etablert en ledergruppe for å koordinere klimaarbeidet i alle statlige selskap – the California Environmental Protection Agency (CalEPA)

The Climate Change Scoping Plan gir de viktigste punktene for hvordan staten skal nå sine utslipssreduksjonsmål:

- "Cap-and-Trade Program": Setter en streng grense for maksimalt utslipp
- Transport: 30% reduksjon av klimagassutslipp fra transport innen 2016, redusere karbonintensivt drivstoff med 10% innen 2020, endre bygging/planlegging/utvikling i byene ved å legge fokus på klima i dette arbeidet
- Elektrisitet og energi: Forbedrede standarder for apparatæffektivitet, 33% fornybare enheter innen 2020, økt bruk av effektive "combined heat and power", økt bruk av solar energi, grønne bygninger, effektivt vannforbruk
- Industri: De 800 største utslippskildene i California – inkludert sement; revisjon av de største industrielle kildene for å identifisere mulighetene for reduksjon av klimagassutslipp hos disse, regulering av raffinerier
- High Global Warming Potential Gases: Fange "high global warming"-utslippsgasser som allerede er i bruk og redusere framtidig påvirkning gjennom lekkasjeresistent utstyr, restriksjoner på bruk, og avgifter
- Skogindustri: Bevare skogbruksarealer og mulige frivillige reduksjoner i skogbruksprosjekter
- Jordbruk: Mer effektivt utstyr, drivstoffforbruk og vannbruk gjennom transport og energimål; reduksjoner fra gjødselkompostering; adressering av produktivitetsvirkninger av avlinger og husdyrbestand
- Søppel og gjenvinning: Redusere metanutslipp og bevege seg i retning av høy gjenvinningsgrad og null restavfall

Oppsummering av eksemplene

Det er utenfor rammen av dette notatet å beregne kostnadene til alle tiltakene beskrevet over. Men for mange av tiltakene er kostnaden klart høyere enn en beskjeden brødkdel av
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

(maksimalt) 50 Euro per tonn CO₂, som "burde" være den riktige verdsettingen av CO₂-utslipp i følge kapittel 3.1. Det er derfor klart at enkelte land er villige til å påta seg kostnader for å redusere klimagassutslipp som langt overstiger det som følger av landenes snevre egeninteresser.

3.3 Oppsummering av kapittel 3

4 Hvorfor og hvordan et lite land kan føre en ambisiøs klimapolitikk

4.1 Ulike ambisjonsnivåer

En kan tenke seg (minst) tre ulike ambisjonsnivåer for klimapolitikk for et lite land. Disse er

a) Gjøre lite eller ingenting for å redusere utslipp av klimagasser
b) Slutte seg til og overholde en eksisterende internasjonal klimaavtale til så lave kostnader som mulig for landet
c) Gjøre mer for å redusere utslipp enn eksisterende internasjonal klimaavtale(r) tilsier

4.1.1 Lavt ambisjonsnivå

En mulig innvending mot denne tankegangen er at vi sjelden observerer land som åpnet beskriver sin politikk som et ønske om å være gratispassasjer og overlate samarbeid til andre. Men selv om dette ikke er en offisiell begrunnelse for politikk i noen land, er trolig mekanismer av typen over viktige for at et land ikke slutter seg til avtaler, ofte under ”påskudd” om at avtalen er spesielt ugunstig for landet, eller at landet bare vil
slutte seg til hvis alle andre land etter seg til. Argumenter av sistnevnte type er velkjente i de faktiske klimaforhandlingene.

Selv om vi ikke kan utelukke at ambisjonsnivå (a) gir en brukbar beskrivelse av ambisjonene i mange land, passer det neppe for Norge og Sverige og en rekke andre europeiske land. I den videre fremstilling skal vi derfor begrense diskusjonen til ambisjonsnivåene (b) og (c).

4.1.2 **Middels ambisjonsnivå**

Hvor ambisjøs en politikk av typen (b) er avhenger av hvor god den internasjonale avtalen er. En "optimal" internasjonal avtale vil nettopp være utformet slik at hvis landene etter seg til den og overholder den og hvert land for øvrig gjør det som er best for landet, så blir totalresultatet "optimalt". Nøyaktig hvor streng en slik internasjonal avtale bør være var diskutert i kapittel 2. Uansett hvor streng avtalen er, vil den gi en pris på utslipp av klimagasser. Denne prisen vil være en kvotepris hvis avtalen er av Kyoto-typen, dvs. at land tildeles kvoter som landene så kan handle med. Alternativt kan vi tenke oss en god internasjonal avtale som i stedet for å fokusere direkte på utslippskvoter er en avtale om virkemiddelbruken som landene må gjennomføre. I en slik avtale kan et sentralt virkemiddel være en felles CO₂-avgift som alle landene pålegges å bruke.

Hva innebærer et ambisjonsnivå av typen (b) for den konkrete utformingen av et lite lands politikk? Svaret avhenger av egenskapene til den internasjonale avtalen. Hvis avtalen direkte regulerer virkemiddelbruken i de enkelte landene, er hvert lands klimapolitikk direkte fastlagt gjennom avtalen. Hvis avtalen er av Kyoto-typen, vil avtalen gi en kvotepris. Kvoteprisutviklingen i årene fremover vil bli bestemt av hvordan det samlede kvotetaket utvikler seg, samt av teknologiutviklingen. Hvor forutsigbar kvoteprisutviklingen blir vil avhenge av hva avtalen sier om hvordan det samlede kvotetaket utvikler seg. Hvis for eksempel avtalen fastsetter dette kvotetaket på en ganske rigid måte, vil fremtidig kvoteprisutvikling bli ganske usikker. Hvis en er svært opptatt av ikke å overstige en helt bestemt mengde CO₂ i atmosfæren kan det likevel være fornuftig å ha en ganske rigid utvikling av kvotetaket i den internasjonale avtalen. Hvis en har en noe mer fleksibel holdning til hvor en til slutt ender i atmosfærerkonsentrasjonen innefor et intervall (f.eks. 500-550 ppm CO₂-e) kan det være
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

fornuftig å la utviklingen av kvotetaket bli bestemt også ut fra en rimelig forutsigbar utvikling av kvoteprisen.

Den økonomisk beste måten for et lite land å tilpasse seg en internasjonal avtale som pålegger landet en bestemt totalkvote og som tillater handel med kvoter er som følger (se bl a NOU 2000:1). Landet bør gjennomføre de og bare de utslippsreduiserende tiltakene som er lønnsomme til den internasjonale kvoteprisen. Dersom en lar alle private aktører stå overfor den internasjonale kvoteprisen i alle aktørene aktører (herunder beslutninger om nyetableringer og nedleggelser), vil markedet i stor grad gjennomføre nettopp de tiltakene som er samfunnsøkonomisk lønnsomme. Offentlige organer må også treffe beslutninger som har konsekvenser for klimagassutslipp. Også for slike beslutninger bør den internasjonale kvoteprisen legges til grunn for å vurdere lønnsomheten av tiltakene.

I drøftingen over har vi gått ut fra at det ikke er noen begrensninger på hvor mange kvoter hvert land kan kjøpe på det internasjonale markedet. I så fall vil fordelingen av utslippsreduiserende tiltak innen landets grenser versus kjøp av kvoter bli bestemt av kvoteprisen og kostnadene av å redusere utslipp innenlands. Når alle landene oppfører seg på denne måten får vi en kostnadseffektiv fordeling av utslipp mellom land, mens samlede utslipp blir bestemt av avtalen. I Kyoto-avtalen er det imidlertid noen formuleringer som kan tolkes som en begrensning på hvor mye kvoter et land kan kjøpe i utlandet. Hvis en slik begrensning er en bindende skranke for et land må den interne prisen på utslipp i dette landet være høyere enn den internasjonale kvoteprisen. Den interne utslippsprisen i landet må være akkurat så høy at en tilfredsstiller en slik skranke på kjøp av internasjonale kvoter (ved en høyere intern pris blir flere utslippsreduiserende tiltak gjennomført innenlands, og dermed blir behovet for kvotekjøp mindre). En enkel måte et land kan oppnå en intern utslippspris som er høyere enn den internasjonale kvoteprisen er å innføre en egen utslippsavgift som kommer i tillegg til kvoteplikten. I sine vurderinger av utslippsreduiserende tiltak vil i så fall alle private aktører legge til grunn den samlede utslippsprisen, som er lik summen av den internasjonale kvoteprisen og den nasjonale avgiften (det er dette systemet vi i dag har for petroleumssektoren i Norge). Også for beslutninger som foretas av offentlige organer i landet med skranker på kvotekjøp bør den interne prisen (dvs. sum av kvotepris og avgift) legges til grunn.
4.1.3 **Høyt ambisjonsnivå**

Dersom vi har en god internasjonal avtale, er det neppe noen grunn for noen land å ha et ambisjonsnivå utover (b). Dagens Kyoto-avtale har imidlertid mange svakheter:

- den dekker bare ca 30% av verdens klimagassutslipp
- avtalen er kortsiktig, og gir ingen signaler om hva vi kan vente etter 2012
- CDM-ordningen har en rekke svakheter

Gitt disse momentene, er det i flere europeiske land en betydelig opinion som mener at et ambisjonsnivå av typen (b) er for passivt. Samtidig er det ikke helt klart hva som kan oppnås med et høyere ambisjonsnivå. Noen har argumentert med at "forbildeeffekten" er viktig: Ved at et land gjør mer enn det er forpliktet til av en internasjonal avtale øker sjansen for at også andre land skjerper sine klimapolitiske mål. Et annet argument har vært mer instrumentelt: En ambisiøs klimapolitikk i ett land kan bidra til en teknologiutvikling som på sikt gir lavere utslipp også i andre land. Et tredje argument for en ambisiøs klimapolitikk er av moralsk art: Rike land i Europa har en moralsk plikt å gjøre mer enn Kyoto-avtalen forplikter landene til. Vi kommer tilbake til disse momentene i kapittel 5. I resten av dette kapittelet skal vi drøfte på hvilken måte et lite land kan ha et høyere ambisjonsnivå enn (b) og hva det betyr for konkret klimapolitikk i landet.

4.2 **Ulike utforminger av en ambisiøs klimapolitikk**

Vi skal i det følgende se på to presiseringer av en ambisiøs klimapolitikk for et lite land ("høyt ambisjonsnivå"). Disse kan litt upresist beskrives som

i) Maksimer samlede utslippsreduksjoner i verden til en gitt kostnad for landet
ii) Gjennomfør landets del av en god internasjonal klimapolitikk

Hvor ambisiøs (i) er avhenger selvsagt av hvor store kostnader landet er villig til å påta seg. For at (i) skal være mer ambisiøs enn (b), dvs. "middels ambisjonsnivå", må kostnadene være høyere enn det som følger av (b). Vi vil i neste avsnitt diskutere hva (i) innebærer for utformingen av klimapolitikken i ett lite land som Norge eller Sverige. Når det gjelder (ii), vil den presise utformingen avhenge av hva en definerer som "god internasjonal klimapolitikk". Dette er diskutert i kapittel 2, og nedenfor vil vi diskutere hva et slikt overordnet prinsipp innebærer for konkret klimapolitikk i lite land. Vi skal i drøftingen under legge til grunn en Kyoto-lignende avtale som bakgrunn.
4.2.1 **Maksimer samlede utslippsreduksjoner i verden til en gitt kostnad for landet vi ser på**

Dersom et land skal påta seg kostnader utover hva en overholdelse av Kyoto-avtalen innebærer, virker det rimelig (men ikke opplagt, som jeg vil komme tilbake til) at vi skal forsøke å oppnå størst mulig samlede globale utslippsreduksjoner til disse kostnadene. Vi vil først drøfte hva dette innebærer for landets klimapolitikk, og deretter se på hvorfor en slik politikk i praksis kan være komplisert.

Anta at det foreligger en veldefinert internasjonal kvotepris. For en gitt totalkostnad for et lite land reduseres samlede utslipp i verden mest dersom dette landet gjennomfører de og bare de utslippsreducerende tiltakene som er lønnsomme til den internasjonale kvoteprisen. Summen av disse tiltakene i landet vil gi en bestemt kostnad for landet. Det som er igjen av den samlede kostnaden landet er villig til å påta seg brukes i utlandet til å redusere utslipp der gjennom kvotekjøp (hvor disse kvotene "brennes" slik at samlede utslipp faktisk går ned). Klimapolitikken i landet blir altså akkurat som under ambisjonsnivå (b), forskjellen er at landet i det mer ambisiøse tilfellet bruker mer penger til å redusere utslipp i utlandet.

Resonnementet over baserte seg implisitt på to antagelser:

I. det var en 1-til-1 sammenheng mellom kvotekjøp i utlandet og faktiske utslippsreduksjoner i utlandet
II. innenlandske tiltak i landet vi ser på har ikke har noen virkninger på utenlandske utslipp

Som vi straks skal vise, kan disse forutsetningene være problematiske. Merk at her er det en forskjell fra ambisjonsnivå (b). Under (b) bryr vi oss ikke om hva våre handlinger innebærer for faktiske utslipp i utlandet, vi er under (b) bare opptatt av at vi formelt sett holder oss til den internasjonale avtalen.

Det er (minst) tre forhold som gjør at I og II ikke er oppfylt:

7 På samme måte som drøftet over i forbindelse med "middels ambisjonsnivå" (b), vil en eventuell bindende skranke på hvor mye et land må gjøre av tiltak hjemme innebære en intern pris på innenlandske utslipp som er høyere enn den internasjonale kvoteprisen.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

- imperfekt CDM (innebærer at I ikke er oppfylt)
- karbonlekkasje (innebærer at II ikke er oppfylt)
- andre indirekte virkninger av innenlandske tiltak (innebærer at II ikke er oppfylt)

En klimaavtale hvor mange land ikke har noen forpliktelser i det hele tatt er i utgangspunktet svært lite kostnadseffektiv. I Kyoto-avtalen har en forsøkt å bøte på dette gjennom den såkalte "clean development mechanism" (CDM). Poenget med denne ordningen er at i-land i stedet for å redusere egne utslipp skal kunne betale u-land for at de reduserer sine utslipp. Dette gjøres ved at u-land kan utstede CDM-kvoter i et omfang svarende til de utslippsreduksjonene de påtar seg. I-landene kjøper slike CDM-kvoter som gir dem mulighet til å slippe ut mer enn det som svarer til deres initiale utslippsstat i henhold til Kyoto-avtalen.

I en ideell verden ville CDM-ordningen vært identisk med en situasjon hvor u-landene ble tildelt kvoter i et omfang nøyaktig lik utslippene de ville hatt uten tiltak, som de så kunne selge i den grad de gjennomfører egne tiltak. I virkeligheten fungerer ikke CDM-ordningen helt i overensstemmelse med et slikt idealbilde. Spesielt er det god grunn til å spørre seg om hvor reelle utslippsreduksjonene knyttet til CDM-kvoter er. Det er to hovedproblemer\(^8\): For det første kunne tiltaket som gir grunnlag for CDM-kvoter blitt gjennomført (umiddelbart eller litt inn i fremtiden) selv om det ikke hadde vært knyttet CDM-kvoter til tiltaket. For det andre kan tiltaket ha ulike indirekte virkninger gjennom markedet som gir økte utslipp andre steder i økonomien som i hvert fall delvis oppveier utslippsreduksjonen knyttet til CDM-kvoter. Uansett hvor godt sertifiseringsystem en har for CDM-kvotene er det nesten umulig helt å gardere seg mot disse to problemene. Et land som kjøper CDM-kvoter kan imidlertid kompensere for disse svakhetene gjennom hvordan vi lar CDM-kjøp inngå i landets interne klimaregnskap. Hvis vi for eksempel tror at annenhver CDM-kvote har null effekt på klima mens annenhver kvote gir ekte utslippsreduksjoner svarende til kvoten, kan landet i sitt regnskap regne \(\frac{1}{2}\) tonn reduserte utslipp i utlandet når det kjøper en CDM-kvote for 1 tonn.

Når bare et begrenset antall land slutter seg til en avtale (som dagens Kyoto-avtale) oppstår problemet med såkalt karbonlekkasje: Tiltak i et land eller en gruppe av land for

å redusere utslipp av CO₂ kan føre til økte CO₂-utslipp i andre land. Vi kommer utførlig tilbake til dette i kapittel 5. Et poeng her er at ulike typer tiltak i et land kan gi ulik karbonlekkasje. Dette innebærer at dersom en skal maksimere samlede utslippsreduksjoner i verden for en gitt kostnad må en i prinsippet ta hensyn til hvordan ulike tiltak i landet påvirker utslipp i utlandet. Det sier seg selv at dette i praksis kan være svært vanskelig eller umulig.

For å oppsummere: Et klimapolitisk mål av typen (i) virker umiddelbart ganske fornuftig. Når en tar hensyn til komplikasjonene diskutert over vedrørende beregninger av samlede utslippsreduksjoner er det imidlertid ikke opplagt hva et slik overordnet prinsipp innebærer for konkret utforming av klimapolitikken for et lite land som Norge eller Sverige.

4.2.2 Gjennomfør landets del av en god internasjonal klimapolitikk

Motivasjonen for et slikt prinsipp kan være av moralsk art: ”Vi bør oppføre oss skikkelig uansett hvordan andre oppfører seg”. En kan også argumentere for et slikt prinsipp basert på ”pådriverrolle” eller ”forbildeeffekt”; vi kommer tilbake til disse momentene i kapittel 5. Uansett: Dersom et prinsipp av denne typen skal brukes i utformingen av konkret klimapolitikk, må en først definere hva som menes med en god internasjonal klimapolitikk. Her vil vi legge til grunn at en god internasjonal klimapolitikk kjennetegnes ved at den

- oppnår klimamål til så lave kostnader som mulig (kostnadseffektivitet)
- balanserer tiltakskostnader (nå og i nær fremtid) mot gevinst av unngåtte klimaendringer (i fjern) fremtid
- fordeler kostnader ”rettferdig” mellom land

De første to punktene ble diskutert i kapittel 2. Det tredje punktet er ikke ukontroversielt, men de fleste vil trolig være enige i at i-land bør bære en større del av kostnadene (i prosent av BNP) enn u-land. Kombinert med kravet om kostnadseffektivitet (som bestemmer fordelingen av faktiske utslippsreduksjoner mellom land) innebærer dette at de fleste i-land i tillegg til å betale for egne utslippsreduksjoner også må betale en del av kostnadene u-land får som følge av sine utslippsreduksjoner. Innenfor dagens avtaleregime betyr dette at i-land i tillegg til egne utslippsreduksjoner bør kjøpe CDM-kvoter. Hvor mye CDM-kvoter hvert i-land bør
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

kjøpe kan ikke bli bestemt av det overordnede prinsippet som her legges til grunn, og vil ikke bli diskutert videre her. Når det gjelder spørsmålet om hvor mye et lite land bør begrense egne utslipp, kan ikke dette avledes direkte fra prinsippet om å "gjøre vår del av en god internasjonal klimapolitikk", selv om vi har definert denne internasjonale klimapolitikken så detaljert at vi vet hva samlede utslipp i verden bør være. Årsaken til dette er at en kostnadseffektiv klimapolitikk typisk vil gi ulike prosentvise reduksjoner i ulike land og landområder.

Med en godt presisert definisjon av en god internasjonal klimapolitikk vil det imidlertid følge et forløp for marginalkostaden av utslippsreduksjoner, dvs. en pris på utslipp (avgift eller kvotepris). Krav om kostnadseffektivitet innebærer at det er denne prisen (eller mer presist dette prisforløpet) som bør gjelde i alle beslutninger i et land som "gjennomfører sin del av en god klimapolitikk". Anta for eksempel at vi legger til grunn at en "riktig" utslippsspris er 50 Euro tonn CO₂ i dag og stigende (i realverdi) med 2% per år (se kapittel 2 for en nærmere diskusjon). Dø an felle alle landets husholdninger og bedrifter ha en utslippsspris på dette nivået, enten i form av kvotepris eller avgift eller en kombinasjon. En utslippsspris på dette nivået bør også legges til grunn for verdsetting av endringer i innenlandske utslipp i alle beslutninger som foretas av offentlige organer. I så fall blir den samlede innenlandske utslippsreduksjonen bestemt ved at alle utslippsreduserende tiltak som er lønnsomme til dette prisforløpet blir gjennomført, mens tiltak som ikke er lønnsomme til dette prisforløpet ikke blir gjennomført. Hvis resten av verden fulgte samme prinsipp ville vi få et totalresultat som var likt med det som ble definert som en god internasjonal klimapolitikk.

Prinsippet om å "gjøre sin del av en god internasjonal klimapolitikk" vil gjennom en presisering av hva som er god klimapolitikk gi en utslippsspris som kan brukes til å verdsette innenlandske utslippsreduksjoner. Enkelte tiltak i landet kan også påvirke utslipp i utlandet. Hvordan skal endringer i utenlandske utslipp verdsettes i landets beslutninger? Svaret på dette er ikke opplagt. På den ene siden bidrar alle utslipp like mye til klimaendringer, uansett hvor utslippene finner sted. Dette skulle tilsig at landet i sine beslutninger verdsetter endringer i utslipp i utlandet likt med innenlandske utslipp. På den annen side kan en slik verdsetting innebære at en verdsetter utenlandske utslipp høyere enn hva det reelt koster å redusere utenlandske utslipp (via CDM eller andre kvoter). I så fall burde landet kjøpe opp "ubegrenset" med kvoter på det internasjonale
markedet. Dersom en i stedet verdsetter alle endringer i utenlandske utslipp likt med den internasjonale kvoteprisen (eventuelt en "justert" kvotepris for å ta hensyn til at noen kvoter ikke gir reelle utslippsreduksjoner, jfr. drøftingen i avsnitt 4.2.1), unngår vi et slikt paradoks. Ulik verdsetting av innenlandske og utenlandske utslipp strider mot prinsippet om global kostnadseffektivitet. Men dette er en konsekvens av prinsippet om at et enkelt land gjennomfører sin del av en god internasjonal klimapolitikk, selv om dette ikke blir fulgt opp av andre land. Hvis alle land hadde fulgt samme prinsipp, ville utslippsprisen vært lik i alle land, og dette ville også vært den internasjonale kvoteprisen.

4.2.3 Unntak for enkelte sektorer?

Selv om et lite land som f eks Norge eller Sverige som hovedprinsipp innretter klimapolitikken slik at landet gjør "sin del av en god internasjonal klimapolitikk", kan det argumenters for at det gjøres unntak fra dette hovedprinsippet for noen sektorer. Det er i hvert fall tre argumenter for dette:

1) prinsippet vil gi et annet resultat for landet enn hvis den "gode internasjonale klimapolitikken" faktisk ble gjennomført i alle land
2) vi ønsker ikke "dobbeltregulering" av de delene av landets økonomi som er omfattet av EUs kvotesystem (hvis landet vi ser på er dekket av dette kvotesystemet)
3) tilleggsreguleringer av utslipp som omfattes av EUs kvotesystem vil bare flytte på utslipp innenfor utslippstaket bestemt av samlet kvotemengde innen dette systemet.

Vedrørende (i): Priser og andre konkurransevilkår på verdensmarkedet blir helt andre i en situasjon hvor bare ett land fører en politikk i overensstemmelse med prinsippet beskrevet i avsnitt 4.2.2 enn hvis en slik politikk føres i alle andre land. Dermed blir også en rekke økonomiske størrelser i landet som fører denne politikken, herunder næringssammensetningen, annerledes enn den ville blitt dersom en ambisjøs klimapolitikk ble ført i alle land. Blant annet ville utslippsintensive industrier bli hardere rammet av en særegen streng klimapolitikk enn av en globalt streng klimapolitikk. Eiere og ansatte i disse industriene ville argumentere for at det var urimelig og lite lønnsomt dersom de skulle få svekket konkurranseevne pga. en særegen politikk.
Vedrørende (ii): Dersom prinsippet om å føre sin del av en god internasjonal klimapolitikk innebærer en høyere utslippsris i landet enn kvoteprisen i EU, må en på en eller annen måte regulere utslippene til bedriftene som omfattes av kvotesystemet utover reguleringen som kvotesystemet innebærer. Det mest nærliggende er å tenke seg at de i tillegg til kvoter må betale en CO₂-avgift, på samme måte som petroleumssektoren i Norge må gjøre i dag. Selv om dette er fullt mulig, vil bedriftene det gjelder være klart negative til dette. En kan også argumentere for at en i minst mulig grad bør "tukle med" kvotesystemet i EU, som til tross for sine svakheter er et eksempel på en forholdsvis velfungerende internasjonal avtale.

Vedrørende (iii): Samlet utslippsmengde fra de sektorene som omfattes av EUs kvotesystem er bestemt av de samlede tildelte kvotene innenfor dette systemet. Dersom et lands bedrifter får en CO₂-avgift på toppen av kvoteplikten og dermed reduserer sine utslipp, vil de også bruke færre kvoter. Dermed blir det flere kvoter og større utslipp i resten av området som er dekket av EUs kvotesystem. Særegne tilleggsreguleringer i ett land vil altså bare flytte på utslipp, og ikke ha noen direkte virkning på samlede utslipp i verden⁹. Samtidig vil slike tilleggsreguleringer påføre landet en kostnad, og det kan være vanskelig for myndighetene i landet å argumentere for at landet skal påta seg en kostnad bare for å flytte utslipp fra landet til andre europeiske land.

⁹ En kan ikke se bort fra at en slik regulering kan ha indirekte virkninger, bl.a. fordi utslipp innen ulike deler av EUs kvotesystem kan ha ulik virkning (via markedet) på utslipp andre steder i verden. Imidlertid er både fortegn og styrke av eventuelle indirekte virkninger svært vanskelig å ha noen fornuftig mening om.
4.3 Oppsummering av kapittel 4

Kapittelet har drøftet hvordan et lite land kan føre en ambisiøs klimapolitikk. Det ser spesielt på to presiseringer av en ambisiøs klimapolitikk for et lite land. Disse kan litt upresist beskrives som

i) Maksimer samlede utslippsreduksjoner i verden til en gitt kostnad for landet

ii) Gjennomfør landets del av en god internasjonal klimapolitikk

Når det gjelder i), er ambisjonsnivået selvsagt avhengig av hvor store kostnader landet er villig til å påta seg. Uansett hvor store disse kostnadene er, gir i) følgende politikkanbefaling dersom det finnes en internasjonal kvotepris: For en gitt totalkostnad for et lite land reduseres samlede utslipp i verden mest dersom dette landet gjennomfører de og bare de utslippsreducerende tiltakene som er lønnsomme til den internasjonale kvoteprisen. Summen av disse tiltakene i landet vil gi en bestemt kostnad for landet. Det som er igjen av den samlede kostnaden landet er villig til å påta seg brukes i utlandet til å redusere utslipp der gjennom kvotekjøp.

Anbefalingen over gjelder dersom det er et velfungerende internasjonalt kvotemarked, slik at et lands kjøp av kvoter faktisk reduserer utslipp andre steder i verden. Utenom EUs kvotesystem er det per i dag i hovedsak CDM-mekanismen som gir muligheten til å kjøpe kvoter.\(^\text{10}\) Det imidlertid en rekke svakheter ved CDM-systemet. Det er derfor ikke opplagt hvilken terskel for utslippspris en skal bruke for å vurdere hvor mye en vil redusere innenlandske utslipp med.

Utgangspunkt ii) ”Gjennomfør landets del av en god internasjonal klimapolitikk” kan være et prinsipp som er motivert av moralsk art: "Vi bør oppføre oss skikkelig uansett hvordan andre oppfører seg". En kan også argumentere for et slikt prinsipp basert på ”pådriverrolle" eller "forbildeeffekt", noe som blir diskutert senere i utredningen.

I kapittelet blir det argumentert for at en konkret utforming av et prinsipp av typen ”gjennomfør landets del av en god internasjonal klimapolitikk” kan være å ta

\(^\text{10}\) Landene som har kvantitative utslippsforpliktelser i henhold til Kyoto-protokollen kan også handle ”Kyoto-kvoter” seg imellom på regjeringsbasis.
utgangspunkt i det forløpet av en utslippspris (avgift eller kvotepris) som må til for å nå et ambisiøst klimamål. Å "gjennomføre landets del av en god internasjonal klimapolitikk" innebærer at det er denne prisen som bør gjelde i alle beslutninger i landet. I så fall blir den samlede innenlandske utslippsreduksjonen bestemt ved at alle utslippsreduserende tiltak som er lønnsomme til dette prisforløpet blir gjennomført, mens tiltak som ikke er lønnsomme til dette prisforløpet ikke blir gjennomført. Hvis resten av verden fulgte samme prinsipp ville vi få et totalresultat som var likt med det som ble definert som en god internasjonal klimapolitikk. Selv om det enkle prinsippet over kan virke fornuftig ved første øyekast, er det ikke helt uproblematisk. Spesielt vil en ensidig gjennomføring av "landets del av en god internasjonal klimapolitikk" for et lite land gi landet et annet resultat i form av kostnader og næringsstruktur enn hvis alle andre land også hadde fulgt samme prinsipp.
5 Konsekvenser av en ambisiøs klimapolitikk i et lite land

5.1 Direkte virkninger på klimautviklingen

Utgangspunktet er et referanseforløp kalt BaU (“Business as Usual”). Her antas det at en vekst i CO$_2$-utslipp per capita globalt på 0,55 % per år gjennom dette århundret. I industrilandene er utslippene per capita relativt stabile i første halvdel av århundret og faller deretter gjennom andre halvdel av århundret. I u-landene vokser utslipp per capita 1,16 % i gjennomsnitt over det 21. århundre, men også i u-landene faller utslipp per capita mot slutten av århundret. Når det gjelder det 22. århundret, har vi antatt at CO$_2$-utslippene per capita i alle regioner fortsetter fallet som antas for siste del av det 21. slik at verdensøkonomien i det store og hele antas å bli avkarbonisert i løpet av det 22. århundret. Denne BaU-banen gir en global temperatur på 2 °C over førindustrielt nivå i 2050, 3,8 °C i 2100, og 4,8 °C i 2200.

Vi har videre sett hva som skjer når ett land eller gruppe av land ensidig reduserer sine utslipp. Vi ser bort fra karbonlekkasjer og andre indirekte virkninger som kan påvirke utslippene i andre land. Disse forholdene er diskutert i avsnittene 5.2-5.6.

Vi har ikke gjort en egen analyse for EU. Derimot har vi sett på virkningen av utslippskutt for en større gruppe enn EU, nemlig de landene som har påtatt seg utslippsbegrensninger i Kyoto-avtalen (Kyoto-landene). Dette inkluderer Australia, Canada, EU-2711, Japan, Russland, Ukraina, og en del mindre stater12. Denne gruppen av land står i dag for ca 30 % av de globale CO$_2$-utslippene. I BaU-scenarioet faller denne

11 Unntatt Kypros og Malta.

12 Island, Norge, Sveits, Kroati, New Zealand, Liechtenstein.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

andelen til 13 % i 2050 og til 7 % i 2100. For å illustrere virkningen av at Kyoto-landene gjennomfører tiltak uten å få med resten av verden, har vi sett på tilfellet der utslippene i denne gruppen av land reduseres med 25 % innen 2025, med 80% innen 2050, og med 98 % innen 2100 (i forhold til BaU). Utslippene i denne gruppen av land reduseres ytterligere og er nær null gjennom det 22. århundre. Dette er altså ganske dramatiske ensidige utslippskutt. Til tross for dette er virkningen på klima svært beskjeden: Den globale temperaturøkningen blir bare 0,18 °C lavere i 2100 og 0,22 °C lavere i 2200.

Vi har gjort en tilsvarende analyse av ensidige utslippskutt for USA. Vi har sett på lignende kraftige kutt for USA som for Kyoto-landene, og resultatene for temperaturutviklingen blir omtrent som for utslippskuttene for Kyoto-landene.

Vi har også sett på utslippskutt i Kina. Kina har i dag utslipp av CO₂ på 4,6 tonn per capita, et tall som i de senere årene har vært i sterk vekst. Så sent som i 1990 var CO₂-utslippene i Kina på bare 2,1 tonn per innbygger. I BaU-banen er det lagt til grunn en videre vekst i utslipp per capita i Kina frem til 2070, hvoretter de stabiliseres og deretter begynner å falle etter hvert som det antas at fornybar energi og kjernekraft kommer sterkere inn. Kina står i dag for om lag 23 % av de globale CO₂-utslippene. I BaU-scenariet øker dette tallet svakt, til 25 % i 2050, men vil falle til 14 % i 2100, etter hvert som økonomiene til de øvrige u-landene er antatt å vokse.

For å se på virkningen av at Kina gjennomfører ensidige tiltak, har vi igjen sett på et tilfelle med meget omfattende og raske tiltak. Vi har antatt at CO₂-utslippene per capita i Kina begynner å falle fra 2010 og reduseres til 1,9 tonn i 2050 og til 0,3 tonn i 2100, se figur 5.1. Det gir en reduksjon i Kinas samlede utslipp på 53 % i forhold til dagens utslippsnivå innen 2050 og med 96 % innen 2100. Dette innebærer at utslippene i Kina i 2050 og 2100 er henholdsvis 78 og 97 prosent lavere enn i BaU.

Også i dette tilfellet er utslagene på temperatur beskjedne (men sterkere enn for Kyoto-landene og USA): I forhold til BaU blir temperaturen 0,35 °C lavere i 2100, og 0,38 °C lavere i 2200.

Endelig har vi sett på en kombinasjon av utslippskuttene over. Nå blir virkningen på temperaturen noe større, se figur 5.1. og 5.2. Men også i dette tilfellet er utslagene
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

forbåusende små. I forhold til BaU senkes temperaturen med 0,76 °C i 2100, og 0,85 °C i 2200.13

Vi ser altså at selv om industrilandene gjennomfører meget omfattende utslippskutt og samtidig får Kina til å gjøre det samme, er man langt unna å oppnå en stabilisering av global temperatur på 2 °C over før-industrielt nivå. Et scenario som gir en stabilisering på 2 °C er imidlertid vist i figur 5.3 og 5.4. Her gjennomfører USA, Kina og Kyoto-landene de samme utslippskuttene som er beskrevet over. Men samtidig stopper de øvrige ulandene sin utslippsvekst per capita og kutter utslippene av CO\textsubscript{2} til 1,2 tonn per capita i 2050 og til 0,3 tonn i 2100.

Gjennomgangen over viser at de direkte virkningene på klimautviklingen av en ambisiøs klimapolitikk for et lite land (og selv en ikke så liten land-gruppe som EU) er svært beskjedne. Resten av kapittelet vil se på mulige indirekte virkninger av en ambisiøs klimapolitikk i et lite land.

13 Temperaturreduksjonen i 2100 i de tre foregående eksempelene summerer seg til 0,68 °C, altså noe mindre enn 0,72 °C som blir resultatet av en samlet innsats her. At effekten av summen av unilaterale tiltak ikke summerer seg til effekten av koordinerte tiltak, skyldes at man står overfor en rekke ikke-lineære sammenhenger. For eksempel øker temperaturen logaritmisk med konsentrasjonen av CO\textsubscript{2}, samtidig som det er en rekke ikke-lineære tregheter i systemet.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Figur 5.1

Utviklingen i tonn CO2 per capita. Alle industrilandene reduserer utslippene med 80 og 98 prosent (fargede kurver) i forhold til BaU (grå kurver) i henholdsvis 2050 og 2100, samtidig som Kina reduserer utslippene med 53 og 96 prosent innen 2050 og 2100.

Kilde: US Department of Energy og Statistisk sentralbyrå.

Figur 5.2

Virkning på global temperatur av at alle industrilandene reduserer utslippene med 80 og 98 prosent (fargede kurver) i forhold til BaU (grå kurver) i henholdsvis 2050 og 2100, samtidig som Kina reduserer utslippene med 53 og 96 prosent innen 2050 og 2100.

Kilde: Hadley Centre og Statistisk sentralbyrå.
Figur 5.3

Utviklingen i tonn CO₂ per capita. Alle
land kutter utslippene med 80 og 98
prosent (fargede kurver) i forhold til
BaU (grå kurver) i henholdsvis 2050 og
2100.

Kilde: US Department of Energy og Statistisk
sentralbyrå.

Figur 5.4

**Global temperatur i forhold til førindustriell tid i to scenarier: BaU (grå kurve) og hvis industriandene og Kina
reduserer utslippene som beskrevet i
figur 5, 7 og 9, samtidig som også de
øvrige u-landene reduserer utslippene i
forhold til dagens nivå med 3 % innen
2050 og med 77 % innen 2100 (grønn
kurve).

Kilde: Hadley Centre og Statistisk sentralbyrå.
5.2 Karbonlekkasje

Dersom ett land (evt. en gruppe av land) reduserer sine utslipp, er det diverse mekanismer som kan føre til økt utslipp i andre land. Det er dette som kalles karbonlekkasje. I dette kapittelet vil vi se nærmere på følgende 4 mekanismer:

- Lekkasje via verdsettingen av utslipp
- Lekkasje via priseffekter i markedene for fossile brensel
- Lekkasje via markedene for utslippsintensive konkurranseutsatte produkter
- Lekkasje via interaksjonen mellom virkemidler brukt på ulike nivåer (f eks Sverige og EU)

5.2.1 Lekkasje via verdsettingen av utslipp

Denne formen for karbonlekkasje er analysert av bl a Hoel (1992). For å forstå denne mekanismen er det hensiktsmessig å bruke en figur tilsvarende figur 2.1, men hvor vi nå ser på utslippene for et lite land (heretter kalt land A), som vi betegner y. Utslippene i resten av verden (kalt land B) er z. Figur 5.5 illustrerer tilpasningen til resten av verden, hvor det antas at disse landene setter sin marginalkostnad \(C'(z) \) i figuren) lik \(\alpha v \), hvor \(\alpha \) er et gitt tall mellom 0 og 1 (som diskutert i kapittel 2.1 ville \(\alpha = 1 \) i et globalt optimum, mens vi vil forvente \(\alpha < 1 \) når vi ikke har noen internasjonal klimaavtale). Som før er \(v \) marginal miljøkostnad for verden, og vi antar at denne er større jo større samlede utslipp er, slik at \(v \) er en stigende funksjon av \(y+z \), dvs \(v = v(y+z) \).

Initialt antas land A å ha utslipp lik \(y^1 \), og resten av verden velger utslipp \(z^1 \), som gir likhet mellom marginalkostad av utslippsreduksjoner og verdsettingen av utslippsreduksjoner, lik \(\alpha v(y^1 + z) \). Hvis land A reduserer sine utslipp fra \(y^1 \) til \(y^2 \), vil kurven for verdsetting bli lavere, siden \(v \) er stigende i argumentet \(y+z \). I figur 5.5 endres kurven fra \(\alpha v(y^1 + z) \) til \(\alpha v(y^2 + z) \). Da endres utslippene i resten av verden til \(z^2 \), slik at marginalkostnad av utslippsreduksjoner fortsatt er lik verdsettingen av utslippsreduksjoner, nå gitt ved \(\alpha v(y^2 + z) \). Når land A reduserer sine utslipp, vil altså resten av verden øke sine utslipp. Likevel vil summen av utslipp gå ned, dvs \(y^2 + z^2 < y^1 + z^1 \). Dette følger umiddelbart av Figur 5.5, siden \(\alpha v(y^1 + z) > \alpha v(y^2 + z) \) og \(v \) er en voksende i \(y+z \).
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

En kunne kanskje tro at karbonlekkasje via mekanismen beskrevet her er ubetydelig for et lite land, siden et lite land vil ha veldig svak innvirkning på andre lands verdsetting av utslippsreduksjoner. Selv om andre lands utslipp blir endret svært lite relativt til landenes egne utslipp, kan imidlertid endringene være signifikante relative til det lille landets utslipp. I Appendikset til dette kapittelet har vi sett nærmere på dette, og vi utleder følgene uttrykk for karbonlekkasjen (som sier hvor mye utslipp i resten av verden vil øke for hver enhet redusert utslipp i et lite land):

\[L_1 = \frac{dz}{-dy} = \frac{\alpha(1-\beta)m}{\alpha(1-\beta)m+c} \quad (5.1) \]

Hvor m og c måler brattheten på kurvene v og C’ i figur 5.5 (dvs kurven som gjelder for hele verden). Parameteren \(\beta \) gir land As andel av utslippene i verden når det ikke er noen utslippsreduserende tiltak noen steder i verden. For et lite land som Sverige vil \(\beta \) være tilnærmet lik null, slik at (5.1) kan omskrives til

\[L_1 = \frac{dz}{-dy} = \frac{\alpha m}{c+\alpha m} \quad (5.2) \]

Hvis vi f eks antar at c = m og \(\alpha = 0,25 \) blir \(L_1=1/5=0,2 \). Med dette eksempelet vil en reduksjon i land As utslipp med 1 mill tonn CO\(_2\) føre til økte utslipp andre steder i verden lik 0,2 mill tonn CO\(_2\).
5.2.2 Lekkasje via prisseffekter i markedene for fossile brenser

Denne formen for karbonlekkasje er trolig først analysert av Peter Bohm (1993). Poenget her er at utslippsreduserende tiltak i et land, f eks en karbonavgift, vil redusere etterspørselen etter fossile brenser (kull, olje og gass) i dette landet. Dette vil føre til lavere verdensmarkedspriser på fossile brenser. Den lavere prisen bidrar til økt bruk av fossile brenser i landene uten klimapolitikk. Vi kan illustrere dette med følgende svært enkle, aggregerte, partielle modell for markeder for fossile brenser. La samlet tilbud i verden være en stigende funksjon S av produsentprisen p, dvs $S(p)$. Uten avgifter eller andre begrensninger på bruk av fossile brenser antas etterspørselen å være en avtagende funksjon D av prisen p, dvs $D(p)$. Imidlertid antas en andel β av etterspørselen å være utsatt for en avgift t, slik at samlet etterspørsel er $(1 - \beta)D(p) + \beta D(p + t)$. Prisen p bestemmes i markedet av likevekt mellom tilbud og etterspørsel, dvs $S(p) = (1 - \beta)D(p) + \beta D(p + t)$. For enhver gitt verdi av t følger det en verdi av p, og dermed av bruken av fossile brenser. Omfanget av karbonlekkasje er gitt ved

\[C', \alpha v \]

\[C'(z) \]

\[\alpha v (y^1 + z) \]

\[\alpha v (y^2 + z) \]

\[z^1 \]

\[z^2 \]

\[z^0 \]

\[z \]
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

\[L_2 = \frac{d(1-\beta)D(p)}{dt} - \frac{d\beta D(p+t)}{dt} \]

Her sier nevneren hvor mye bruken av fossile brenseler, og dermed utslippen av CO\(_2\), går ned i landet/landene som innfører skatten \(t \). Telleren sier hvor mye bruken av fossile brenseler, og dermed utslippene av CO\(_2\), går opp i resten av verden som følge av skatten \(t \). Hvis f eks \(L_2 = 0,2 \) betyr dette at hvis land \(A \) øker sin CO\(_2\)-avgift slik at dette landets utslipp går ned med 1 mill tonn CO\(_2\), vil dette samtidig gi lavere verdensmarkedspriser på fossile brenseler, noe som gjør at utslippene i resten av verden øker med 0,2 mill tonn CO\(_2\).

Iappendikset er det vist at

\[L_2 = \frac{(1-\beta)\delta}{\sigma + (1-\beta)\delta} \]

Hvor \(\delta \) er etterspørselselastisiteten etter fossile brenseler (målt positivt) og \(\sigma \) er tilbudselastisiteten for fossile brenseler. Merk at \(L_2 \) er større jo mindre landet vi ser på er (dvs jo mindre \(\beta \) er). For grensetilfellet når \(\beta \) er nær \(0 \) er

\[L_2 = \frac{\delta}{\sigma + \delta} \]

Hvis f eks etterspørselselastisiteten er 0,5 mens tilbudselastisiteten er 2, vil \(L_2 = 0,2 \) (dvs 20%) når \(\beta \) er nær \(0 \). For høyere verdier på \(\beta \) blir karbonlekkasjen mindre.

5.2.3 Lekkasje via markedene for utslippsintensive konkurranseutsatte produkter

Denne formen for karbonlekkasje er trolig den politikere er mest opptatt av. Mekanismen her er at utslippsreduserende tiltak i ett land vil øke kostnaden for utslippsintensive produksjonssektorer. Dette bidrar til økte internasjonale priser for produktene fra disse sektorene, slik at det blir mer lønnsomt å produsere slike produkter i land uten klimapolitikk.

I appendikset viser vi innen rammen av en enkel modell at raten for karbonlekkasje i dette tilfellel kan skrives som
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

\[L_3 = \frac{(1-\beta)\sigma}{h[1+\mu-\beta]\sigma+(1+\mu)\delta]} \]

Her \(\delta \) er etterfølgerselselastisiteten etter det konkurranseutsatte produktet (målt positivt) og \(\sigma \) er tilbudselastisiteten for det samme produktet. Videre uttrykker \(h \) hvor store utslippene per produsert enhet er i landet som strammer til sin klimapolitikk før innstramningen i forhold til resten av verden. Endelig uttrykker koeffisienten med hvor mange prosent utslipp per produsert enhet går ned for et klimatiltak som reduserer produksjonen av godet med 1%.

Merk at \(L_3 \) er større jo mindre landet vi ser på er (dvs jo mindre \(\beta \) er). For grensetilfellet \(\beta \approx 0 \)

\[L_3 = \frac{1}{h(1+\mu)} \frac{\sigma}{(\sigma+\delta)} \]

Anta først at \(h = 1 \) og \(\mu = 0 \). Dette betyr at utslipp per produsert enhet i landet som strammer til sin klimapolitikk er lik som i resten av verden, og at denne utslippssintensiteten ikke påvirkes av klimapolitikken. Hvis f.eks. etterfølgerselselastisiteten er 0,5 mens tilbudselastisiteten er 2, er \(L_3 = 0,8 \) (dvs 80%) når \(\beta \) er nær 0. Hvis vi fortsatt lar \(h = 1 \) men lar \(\mu = 1 \), reduseres karbonlekkasjen til 0,4 (dvs 40%). Verdien \(\mu = 1 \) betyr at de reduserte innenlandske utslippene som følge av strengere klimapolitikk fordeles likt mellom redusert produksjon og redusert utslipp per produsert enhet.

For høyere verdier på \(\beta \) blir karbonlekkasjen mindre enn i eksemplene over. Merk også at \(L_3 \) er høyere jo lavere \(h \) er. Dersom \(h \) er tilstrekkelig lav (dvs at landet som strammer til sin klimapolitikk allerede i utgangspunktet har lavere utslipp per produsert enhet enn andre land) kan vi ikke utelukke karbonlekkasje på over 100%.

5.2.4 Lekkasje via interaksjonen mellom virkemidler brutt på ulike nivåer

En betydelig del av \(\text{CO}_2 \)-utslippene i EU er regulert gjennom EU's kvotesystem (hvor også Norge og andre EEA-land deltar). Summen av kvoter fastsettes politisk i EU. Dette innebærer at summen av utslipp fra sektorer som er en del av dette kvotesystemet blir politisk fastlagt. Klimapolitikk innen ett eller flere EU-land som påvirker utslippene fra
nøen av sektorene innenfor kvotesystemet vil derfor bare flytte utslipp fra disse sektorene til andre sektorer innenfor kvotesystemet. Vi får dermed 100% karbonlekkasje for de aktuelle tiltakene. Det finnes mange eksempler på slike tiltak; her skal vi nevne et par eksempler fra Norge: Norge planlegger å fjerne CO₂-utslippene fra norske gasskraftverk, som er omfattet av EUs kvotesystem. Den reduserte kvotebruken for disse kraftverkene blir dermed tilgjengelig for andre innenfor kvotesystemet. Videre vurderer Norge å erstatte offshore gasskraft på produksjonsplattformer med elektrisitet fra fastlandet. Siden petroleumssektoren er omfattet av EUs kvotesystem vil en slik elektrifisering gi mindre kvotebruk i petroleumssektoren. Disse kvotene blir dermed tilgjengelig for andre sektorer innenfor kvotesystemet. Slike tiltak vil altså ikke redusere samlede CO₂-utslipp; reduksjonen ett sted blir 100% oppveiet av økte utslipp andre steder. Det er ikke dermed sagt at slike tiltak er bortkastet: Dersom de er økonomisk lønnsomme til eksisterende kvotepris, er tiltakene en fornuftig og kostnadseffektiv måte å oppfylle kvotetaket på.

Interaksjonen mellom EUs kvotesystem og andre klimapolitiske tiltak er bare ett eksempel på karbonlekkasje via interaksjonen mellom virkemidler brukt på ulike nivåer. Andre eksempler er gitt av Goulder og Stavins (2011), som drøfter interaksjon mellom statlig og føderal klimapolittikk i USA.

5.2.5 Empirisk litteratur om karbonlekkasje

Foran ble det brukt enkle eksempler på tallanslag for de ulike typene karbonlekkasje. Det er imidlertid grunn til å tro at disse anslagene overvurderer karbonlekkasjen. Det er flere grunner til dette. For det første er varene som handles i de enkle modellene forutsatt helt homogene. I virkeligheten er det forskjeller i varer produsert i ulike land, noe som bidrar til at det blir mindre karbonlekkasje enn enkle talleksempler skulle antyde (gjelder særlig karbonlekkasje av type iii). Videre er det i de enkle modellene sett bort fra transportkostnader og andre handelshindringer. Slike kostnader og hindringer er i praksis til stede, og vil bidra til å redusere karbonlekkasjen (gjelder særlig ii og iii). Endelig er modellene partiell likevektsmodeller; i generelle likevektsmodeller er det virkninger som bidrar til å redusere karbonlekkasjen, se f eks Fullerton (2011) og Karp (2010) . Alle disse momentene bidrar til at vi vil vente at empiriske estimater på karbonlekkasje er mindre enn våre enkle modeller antydet.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Det er utenfor dette prosjektets ramme å gi en detaljert redegjørelse for den empiriske litteraturen om karbonlekkasje. Noe av denne er oppsummert av Karp (2010). De fleste litteraturbidrag ser på virkningen av at et forholdsvis stort land (USA) eller gruppe av land (EU, OECD, Annex 1) reduserer sine utslipp, og beregner hvor mye utslippene øker i resten av verden. Anslagene varierer stort sett fra rundt 5% til 20-30%, men med noen resultater utenfor disse intervallene. Vår analyse antyder noe høyere karbonlekkasjerater for mindre land. Anta f. eks. at i ligning (5.5) er tilbudsøkonomins elasti-1 men etterspørselsøkonomins er 0,5. Hvis gruppen av land som reduserer sine utslipp utgjør 30% av verdensøkonomien er β=0,3, og karbonlekkasjen blir etter denne ligningen lik 26%. Er derimot β tilnærmet null (Norge eller Sverige) øker karbonlekkasjen til 33%.

5.3 Mulige virkninger på teknologiutvikling

Dersom en skal ha håp om å unngå store klimaendringer i løpet av dette og neste århundre, må trenden med økende CO₂-utslipp (med 2,5% per år i snitt de siste 50 år; også de siste 10 årene frem til 2009 har gjennomsnittlig økning vært 2,5% per år14) snus til en ganske rask reduksjon. Vi så i avsnitt 5.1 at det må svært store utslippsreduksjoner til dersom en skal unngå global oppvarming utover ca 2 grader. Det sier seg selv at dette vil stille store krav til ny teknologi for CO₂-fri energi og produkter som krever lite energi. Selv om en i de enkleste økonomiske analysene ofte betrakter teknologiutvikling som noe som kommer av seg selv, vil teknologiutvikling i virkeligheten bli påvirket av en rekke økonomiske størrelser. Det er derfor viktig å diskutere hensynet til hva teknologiutvikling betyr for utformingen klimapolitikken, og spesielt om hvordan klimapolitikken i et lite land kan påvirke teknologiutviklingen.

5.3.1 Klimapolitikk og teknologiutvikling

En høy pris på CO₂-utslipp (i form av enten en avgift eller en kvotepris) vil i seg selv gi et sterkt insentiv til å bruke ressurser til å utvikle klimavennlige teknologier. På dette området er det likevel ikke tvil om at markeder overtallt til seg selv er langt fra perfekte. En viktig årsak til at uregulerte markeder kan gi et dårlig resultat er at en betydelig del av gevinsten ved ny kunnskap ofte i betydelig grad tilfeller andre enn den som har

Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

forårsaket den nye kunnskapen. Denne positive kunnskapsseksternaliteten innebærer at uregulerte markeder kan gi for lite innsats for å utvikle ny teknologi. For å bøte på dette kan det være fornuftig med ulike former for politikk som ekspisitt forsøker å øke incentivene for teknologiutvikling.

Hensynet til teknologiutvikling kan spille en rolle for hva som er ”riktig” karbonpris. Dette er utførlig drøftet i litteraturen, både for miljøavgifter generelt og karbonprisen spesielt. I litteraturen skilles det ofte mellom kunnskapsutvikling forårsaket av læring gjennom erfaring (”learning by doing” eller LbD) og kunnskapsutvikling basert på ekspisitt forskning og utvikling (FoU), selv om skillet i praksis ikke er så skarpt. Goulder og Mathai (2000) viser at ved LbD vil et optimum under rimelige betingelser kjennetegnes ved at marginalkostnadene av å redusere utslipp skal overstige prisen gitt ved regelen diskutert i kapittel 2, dvs ligning (2.4). Dette betyr ikke nødvendigvis at karbonprisen bør være høyere enn prisen gitt ved (2.4). Hvis læringen som en aktørs virksomhet (produksjon, rensetiltak etc.) forårsaker i sin helhet tilfaller aktøren selv, vil aktøren i egeninteresse velge omfanget på virksomheten slik at optimumsbetingelsen er oppfylt. Det er bare i den grad læringseffekten også tilfaller andre at slik læring er et argument for at karbonprisen skal overstige prisen gitt ved (2.4), se for eksempel Rosendahl (2004). Goulder og Mathai viser også at dersom en har tilstrekkelig gode virkemidler for å påvirke FoU, bør karbonprisen være gitt ved (2.4). Med ingen eller begrensede muligheter til å påvirke FoU direkte, kan det også i dette tilfellet være optimalt å ha en karbonpris høyre enn prisen gitt ved (2.4), se bl.a. Gerlagh et al. (2008) og Hart (2008).

De ulike typene av markedssvikt i produksjonen av kunnskap gjelder langt på vei uavhengig av landegrenser. På den annen side er det vanlig at nasjonale myndigheter har et nasjonalt perspektiv på sin teknologipolitikk selv om forskningsaktørene selvfølgelig oppfordres til internasjonalt samarbeid. Det er derfor sannsynlig at doseringen av teknologipolitikken i mange tilfeller kan bli for svak. For eksempel er det sannsynlig at støtten på en subsidie til privat forskning fastsettes ut fra gevinsten andre

bedrifter i samme land kan ha av denne forskningen, og ikke ut fra det samlede antall bedrifter i verden som kan ha nytte av denne forskningen (se Golombek og Hoel, 2009).

Også for kostnadsreduksjoner som skyldes læring, kan kunnskap spres over landegrensene. Slik global spredning av læringsgevinster er innarbeidet i mange klimamodeller (se for eksempel van der Zwaan m fl, 2002). Ved global læring kan det enkelte lands politikk for å internalisere læringsgevinstene tenkes å bli for svak dersom det enkelte land ikke tar inn over seg de globale læringsgevinstene.

5.3.2 Virkninger av klimapolitikken i ett land på teknologi og utslipp i andre land

Utviklingen av klimavennlig teknologi er nærmere drøftet i en teoretisk analyse av Golombek og Hoel (2004), som ser på en enkel modell hvor to land eller grupper av land (her kalt A og B) som hver for seg bestemmer både sine klimautslipp og sin innsats på utvikling av klimavennlig teknologi, dvs. teknologiutvikling som senker kostnadene knyttet til utslippsreduksjoner. I modellen er det tenkt at denne innsatsen er en bestemt type FoU-innsats. Teknologinivået i hvert av landene påvirkes både av landets egen FoU-innsats og av FoU-innsatsen i det andre landet. Analysen ser på konsekvensen av at land A gir klimaspørsmål økt prioritet, dvs. at α_AV øker mens α_BV er uendret i terminologien fra kapittel 3.1. I denne fremstillingen antar vi at α_AV og α_BV er uavhengig av samlet mengde utslipp, slik at formene for karbonlekkasje drøftet i avsnitt 5.2.1 ikke forekommer (Golombek og Hoel ser også på det mer generelle tilfellet hvor slik karbonlekkasje kan forkomme). Det er heller ingen andre former for karbonlekkasje i denne modellen. Hvis FoU-innsatsen hadde vært konstant i begge landene, ville økt
prioritering av klima i land A derfor ikke hatt noen virkning på utslippene i land B. Med endogent bestemt FoU blir resultatene endret: Økt prioritering av klima i land A vil både gi lavere utslipp og økt FoU i land A. Dette tilsier bedret teknologi også i land B. Hvis land B ikke endrer sin FoU, vil den bedrede teknologien i land B innebære at land B reduserer sine utslipp, selv om prioriteringen av klima ikke er endret i land B. Årsaken til dette er at den forbedrede teknologien i land B innebærer at det er blitt mindre kostbart å redusere utslipp, slik at en selv med uendret prioritering vil land B ønske å ha lavere utslipp.

Analysen til Golombek og Hoel viser imidlertid at en normalt vil vente at FoU i land B vil påvirkes av omfanget av FoU i land A: Siden teknologien blir bedre pga innsatsen i land A, trenger ikke land B å gjøre så mye FoU som før. Land B blir altså i en viss forstand gratispassasjerer på teknologiutviklingen i land A. Det vil si at man i større grad enn før satser på kopiere teknologi som er utviklet i utlandet. Golombek og Hoel viser at dersom kunnskapsoverføringen fra land A til B er uavhengig av omfanget på FoU i land B, vil FoU i land B bli nedjustert nøyaktig så mye at teknologinivå og utslipp er uendret i land B, til tross for endringene i land A.

Golombek og Hoel ser også på det tilfellet at et lands egen forskning gjør det enklere å nyttiggjøre seg kunnskap som er generert i utlandet. For dette tilfellet vil land B nedjustere sin FoU i mindre grad enn i tilfellet over. Dette innebærer at utslippene i land B vil gå ned som følge av at land A gir klima økt prioritet. Vi får altså det motsatte av karbonlekkasje via effektene diskutert i avsnitt 5.2: Dersom ett land gir klima økt prioritet og derfor reduserer egne utslipp samt øker sin klimarelaterte FoU, vil totale utslipp i verden gå mer ned enn nedgangen i landet som initierte utslippssuksjonen.

Bosetti og De Cian finner at i noen tilfeller vil teknologiefekten mer enn oppveie lekkasjeeffektene omtalt i avsnitt 5.2. Dette gjelder spesielt for "middels" streng klimapolitikk i OECD-landene: Dersom OECD-landene kutter sine akkumulerte utslipp for perioden 2010-2100 med ca 30-35% i forhold til referansesituasjonen vil utslippene også i de øvrige land i verden gå ned (med opptil ca 2%). For mindre utslippsreduksjoner i OECD er teknologi-effekten så svak at den blir oppveid av lekkasjeeffektene omtalt i avsnitt 5.2. Tilsvarende vil lekkasjeeffektene omtalt i avsnitt 5.2 bli så sterke med utslippsreduksjoner utover ca 35% at de vil dominere teknologiefekten. I dette tilfellet kan utslippene utenfor OECD øke opptil 4%.

5.3.3 Teknologiutvikling som strategi for å fremme fremtidig klimasamarbeid

I avsnittet over var det antatt at utvikling av ny klimavennlig teknologi i ett land gjennom "smittet" også ville bidra til mer klimavennlig teknologi i andre land. Selv om dette ikke er tilfellet har Urpelainen (2011) vist at kan det være i et lands interesse å føre en klimapolitikk som bidrar til å stimulere mer klimavennlig teknologi. I artikkelen er det to land (A og B) og to perioder (nåtid 1 og fremtid 2). I begge perioden antas hvert av landene enten å velge høye (H) eller lave (L) utslipp. I periode 1 er kostnadene av å redusere utslippene fra H til L lik C i begge landene (vi ser nærmere på periode 2 nedenfor). Det antas at det bare er en klimagevinst dersom begge landene reduserer sine utslipp fra H til L. Verdsettingen av denne klimagevinsten i hvert land er enten V eller v, hvor V>C>v. Ser vi isolert på periode 1 gjelder derfor følgende: Dersom begge landene har høy verdsetting (dvs V) av lavere utslipp, vil de begge ønske å redusere sine utslipp. Dersom begge landene har lav verdsetting (v) av lavere utslipp vil begge velge høye utslipp. Dersom ett land har høy verdsetting og et land lav, blir det heller ingen utslippsreduksjon i noen av landene, siden det for landet med verdsetting V bare lønner seg å redusere utslippene fra H til L dersom også det andre landet gjør det.

Anta nå at situasjonen i periode 1 er som følger: Regjeringen i land A verdsetter utslippsreduksjoner høyt (V), mens regjeringen i land B har lav (v) verdsetting av utslippsreduksjoner. (Det kan være nærliggende å tenke på EU som land A og USA og/eller Kina som land B.) Regjeringen i land vet ikke hvordan verdsettingen av utslippsreduksjoner blir i fremtiden, verken i land A eller B. Det er en viss sannsynlighet for at verdsettingen i B endres fra v til V, og det er en viss sannsynlighet for at verdsettingen i land A endres fra V til v.

Vista Analyse AS
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Når periode 1 ses på isolert, vil det ikke bli utslippsreduksjoner i noen av landene. Anta imidlertid at hvis land A reduserer sine utslipp i periode 1 vil dette gi læringseffekter slik at kostnaden av å redusere utslipp i periode 2 vil falle fra C til c. Det antas at c<v<C<V. Det er nå 4 muligheter i periode 2:

1. begge land har verdsetting V
2. begge land har verdsetting v
3. land A har verdsetting V og B har v (som i periode 1)
4. land A har verdsetting v og B har V (motsatt av periode 1)

Ser vi nå igjen på situasjonen for regjeringen i land A i periode 1. Hvis denne regjeringen bare tenker på periode 1 vil den velge utslipp lik H. Hvis regjeringen i land A mener at situasjon 4 i periode 2 er tilstrekkelig sannsynlig, kan regjeringen likevel velge L i periode 1, for på den måten å sikre lave utslipp i periode 2 dersom situasjon 4 da gjelder.

Med eksempelet EU versus USA/Kina kan det altså lønne seg for dagens myndigheter i EU å føre en ambisiøs klimapolitikk, for på den måten å bringe ned EUs fremtidige kostnader av utslippsreduksjoner. Den strategiske grunnen til å gjøre dette er å sikre at EU i fremtiden vil delta i en ambisiøs klimapolitikk sammen med USA/Kina, uansett hvordan EU i fremtiden verdsetter utslippsreduksjoner. Det er viktig å merke seg at denne begrunnelsen for en ambisiøs klimapolitikk i EU faller bort dersom en tror at myndighetene i EU helt sikkert vil ha en høy verdsetting av lavere utslipp også i fremtiden, eller dersom en tror at USA/Kina vil ha en lav verdsetting av utslippsreduksjoner også i fremtiden. Det er altså bare dersom situasjon 4 beskrevet over inntreffer i fremtiden at det har noe for seg å føre en mer ambisiøs klimapolitikk i dag enn mer kortsiktige vurderinger skulle tilsi.

Vista Analyse AS
57
5.3.4 Klimapolitikk som næringspolitikk

Den andre måten å forstå sammenhengen mellom næringsutvikling og klimapolitikk på er at en ambisiøs klimapolitikk som også omfatter offentlig støtte av teknologiutvikling, vil fremme nye industrier som eksporterer avansert klimateknologi til resten av verden. Et eksempel som trekkes frem er at Danmark har ført en aktiv politikk vis-a-vis vindmøller, og har samtidig blitt en verdensledende eksportør av vindmøller. Audretsch og Feldman (1996) viser at bransjer med sterk grad av teknologiutvikling har en tendens til å klumpe seg sammen i såkalte næringsklynger. Dermed overvinner bedriftene selv gjennom sin lokalisering den globale kunnskapseksternaliteten, og den nasjonale støtten til produksjon av ny kunnskap vil kunne være tilstrekkelig.

Den strategiske handelsteorien åpner også for at offentlig støtte til eksportbedrifter kan være velferdsfremmende i visse tilfeller, se f. eks Tirole (1997)\(^{16}\). I en analyse med utgangspunkt i et mulig fremtidig marked for karboninnfangingsteknologier ser Greiker og Rosendahl (2008) nærmere på det strategiske argumentet for både FoU støtte og for å drive en spesielt ambisiøs klimapolitikk i et lite land, og finner at det er et strategisk argument for å støtte FoU. Dersom myndighetene i et land tror på næringsutvikling gjennom å satse ekstra på klimarettet FoU, kan det tenkes at forskningen på dette feltet kommer opp mot et ønsket nivå.

\(^{16}\) En strategisk variabel er bedriftens beslutningsvariabel i markedspillet vi ser på. Det kan f. eks være prisen på et produkt eller kapasiteten til en ny produksjonsenhet. De strategiske variable er substitutter dersom f. eks en økning i en spillers produksjonskapasitet motsvarer av en reduksjon i de andre spillernes produksjonskapasitet.
5.4 **Betydningen av å være pådriver og forbilde**

I det meste av drøftingen til nå har vi lagt til grunn at alle land er er rasjonelle aktører som handler ut fra egeninteresse. I noen tilfeller synes denne forutsetningen å passe dårlig for adferden til enkeltpersoner; muligens passer en slik forutsetning også dårlig for land i enkelte situasjoner. Vi skal i dette avsnittet drøfte ideen om ensidige utslippsreduksjoner med utgangspunkt i adferdsøkonomi, og da særlig med tanke på studier av sosiale preferanser. Siden de fleste eksperimenter ser på adferden til enkeltindivider, skal vi først diskutere problemstillingen som om hvert land var et enkeltindivid. Vi skal så diskutere litt hvordan denne litteraturen kan overføres til studier av land.

Det er mange grunner til at ensidige utslippsreduksjoner kan påvirke andre lands utslipp. En del av disse grunnene ble diskutert tidligere i dette kapittelet. I dette avsnittet ser vi bort fra mekanismene ovenfor og utelukkende på hvordan ensidige utslippsreduksjoner kan påvirke andre land gjennom mekanismer som avhenger av uegennyttige sosiale preferanser. Det betyr ikke at vi ikke anser de andre forholdene ovenfor som uviktige, eller at vi mener at de virkningene vil være små sammenlignet med de virkningene som går via sosiale preferanser. Begrunnelsen er snarere at dette er en naturlig avgrensing. Dessuten er det en problemstilling som er mindre studert i litteraturen.

5.4.1 Gjensidighet

I økonomiske modeller møter vi ofte homo oeconomicus, en aktør som er kjent som en egoistisk nyttemaksimerer. Om en tar denne modellen bokstavlig er den åpenbart gal som en beskrivelse på menneskelig adferd. Foreldre er villig til å ofre mye av egne behov for å hjelpe barna sine, men selv overfor helt fremmede er vi gjerne vennlige og imøtekommende. Spør noen etter veien vil de fleste som vet svaret være imøtekommende og bruke av sin egen tid til å forklare, for bare å ta ett lite eksempel fra dagliglivet. Studier av adferden kan imidlertid hjelpe til å gi en mer systematisk redegjørelse for slik hjelpende adferd. Vi skal derfor først gå gjennom hovedresultatene fra noen av de mest relevante og mest studerte spillene i eksperimentell økonomi og se hvilken lærdom vi kan trekke av det. For en mer generell gjennomgang av eksperimentelle studier av spill, se Camerer (2003). Vi skal særlig fokusere på et aspekt
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

ved adferden som er særlig relevant i denne sammenhengen, nemlig gjensidighet: vi gjengjelder gode handlinger med gode (positiv resiprositet) og dårlige med dårlige (negativ resiprositet).

Et mye studert spill er ultimatumspillet, som er et spill mellom to personer. Den ene - forslagsstilleren - gir et forslag til hvordan de to skal fordele en gitt pott penger. Den andre - respondenten - må enten akseptere og forslaget implementeres, eller avvise og ingen får noe. Resultatene fra lab’en viser typisk at forslag som gir respondenten 20% eller mindre blir avvist av de fleste respondenter. Dette er et uttrykk for negativ resiprositet, respondenten er villig til å ta en kostnad (tape sine 20%) for å straffe den andre som har levert et urettferdig forslag.

Et spill som illustrerer positiv resiprositet er tillitsspillet. En enkel variant av tillitsspillet kan være som følger. Spiller A får 100 kroner. Han velger hvor mye han vil beholde og hvor mye av dette han vil investere i spiller B, det vil si gi til spiller B. Alt han gir til spiller B blir tredoblet. Deretter velger B hvor mye av beløpet han vil sende tilbake til A. Om begge maksimerer sin egen utbetaling, er Nash-likevekten selvsagt at B ikke sender noe tilbake, og dermed at A heller ikke gir noe til B i første omgang.

Resultatene i litteraturen viser imidlertid at forsøkspersonene både sender mer enn 0 og får tilbake mer enn null. For eksempel finner Croson og Buchan (1999) at 85 % returner mer enn beløpet som ble sendt. Hva de returnerer viser en klar tendens til gjensidighet. Jo mer senderen (A) sender, jo større andel blir returnert av mottager (B).

I menneskelig adferd ser vi en tendensen til å gjengjelde vennlige handlinger med vennlige handlinger (positiv resiprositet) og uvennlige handlinger med uvennlige handlinger (negativ resiprositet). Vi kan nå gi en litt klarere presisering av problemstillingen: Hvilken betydning har denne tendensen til gjensidighet for virkningene av at et land ensidig reduserer sine klimagassutslipp? Vi skal angripe problemstillingen ved først å se på eksperimenter som bruker et spill som ligger nærmere internasjonale miljøproblemer. Deretter skal vi se litt på ulike forklaringer på slik resiprok adferd, som en bakgrunn for å spekulere i hvor mye av dette som lar seg overføre til et spill mellom nasjoner.
5.4.2 **Fellesgodespill**

Et spill som er mye studert i laben, og som likner mye på situasjonen med miljøeksternaliteter, er fellesgodespillet. Et eksempel er som følger: Spillerne settes sammen i grupper, si med fire spillere i hver gruppe. Hver spiller får et beløp, si 100 kroner. Spilleren kan velge å ta pengene eller gi til en felles gruppepott. Alt som gis til gruppa blir doblet og delt ut igjen likt til alle. Om en spiller da gir 1 krone vil det dobles til 2 kroner og deles på alle fire så de får 50 øre hver. For hver krone en spiller gir får han altså 50 øre tilbake. Her vil opplagt Homo oeconomicus ikke gi noe til fellespotten.

Når spillet spilles i laben er imidlertid resultatet typisk at spillerne gir en betydelig andel til fellespotten, mange gir alt de kan. I utgangspunktet ser dette altså svært harmonisk ut. Når spillet gjentas forsvinner mye av harmonien, i stor grad som en konsekvens av at moralsk adferd preges av gjensidighet. (Fischbacher og Gächter, 2010).

Mekanismen er enklast å forklare med utgangspunkt i en modell av Brekke et al. (2003). De argumenterer for at adferden avspeiler en avveining mellom moralske ideal og egeninteresse. Om deltagerne i et fellesgodespill kommer til spillet med en oppfatning om hvor mye de ideelt burde gi, vil det faktiske bidraget bli en avveining mellom dette idealalet og egeninteressen. Det kan føre til at de gir mindre enn de ideelt sett synes de burde gi. Men på grunn av gjensidigheten vil dette påvirke hva de andre mener de ideelt sett bør gi i neste runde. Hauge (2010) spurte deltagerne i et eksperiment hvor mye det er riktig å gi i et fellesgodespill. Noen kunne betinge svaret på hva andre ga, og majoriteten av disse svarte at det var riktig å gi det samme som gjennomsnittet av hva andre ga. Altså om andre i gjennomsnitt gir 50% bør jeg også gi 50%, om andre gir 70% bør jeg gi 70% osv. Igjen ser vi at gjensidighet betyr at en er snill og grei så lenge alle andre er det. Når de andre gir litt mindre enn idealet betyr det at idealet for alle vil falle gradvis. For hver ny runde vil det moralske kravet bli litt svakere fordi alle andre også gir litt mindre enn de ideelt sett synes de burde gi. Denne fallende tendensen i bidragene er nettopp det vi observerer i eksperimentelle studier av slike spill.

Brekke et al. (2011) studerer en variasjon av dette spillet der deltagerne først skal velge hva de vil gjøre med 50 kroner de får utdelt, vil de beholde dem selv eller gi pengene til Røde Kors. De som gir bort pengene blir så plassert i en gruppe med andre som har gitt bort pengene (røde grupper), og de som beholder pengene blir plassert i en gruppe med
andre som beholder pengene (blå grupper). Alle grupper spiller så fellesgodespillet. Resultatet ble at de som ga bort pengene til røde også bidro mer i fellesgodespillet, særlig etter noen runder, fordi samarbeidet i disse gruppene ikke forvitret. Dette kan tyde på at en person som er sjenerøs i en sammenheng tenderer til å være det i en annen, men for vårt formål er vi mer interessert i noe vi observerte mot slutt av spillet.

Mot slutt av spillet kunne spillerne for hver ny runde velge hva de ville gjøre med de 50 kronene, og dermed hvilken type gruppe de kom i. De fleste vekslet litt mellom røde og blå grupper. Vi kunne da sammenligne adferden til samme person, avhengig av om de var i røde eller blå grupper. Spillerne hadde fått informasjon om hva som skjedde i andre grupper og visste derfor at det ble gitt mer i røde grupper. Vi så da at spillerne ga vesentlig mer i røde grupper - der de visste de andre også ville gi mye - enn de gjorde i blå grupper hvor de viste de andre ville gi lite. Merk at bidragene her er frivillige, og spillerne spiller fellesgodespillet bare en gang før de blir plassert i en ny gruppe. De har derfor ingen mulighet til å påvirke hva de andre vil gjøre. Likefullt er de frivillige bidragene større når de spiller med noen de forventer vil gi mye, og de er lavere når de spiller spillet med noen de forventer vil gi lite.

Om det samme skulle gjelde land, ville andre land forurense mindre om vi forurenser mindre. Altså er det en positiv effekt av å være foregangsland. Men å gå fra enkeltindivider til land er et langt skritt. Er det noe grunnlag for et slikt skritt? For å svare på det er det naturlig å se nærmere på mekanismene bak denne adferden.

5.4.3 **Mekanismer og forklaringer**

En mulig forklaring på noen av disse observasjonene er ulikhetsaversion (Fehr og Smith 2000; Bolton og Ockenfels 2000), det vil si at folk har negativ nytte av ulikhet. Ta som eksempel en respondent i et ultimatumspill som får tilbud om å få 20 kroner mens forslagsstiller får 80 kroner. Denne respondenten har da en positiv nytte av de 20 kronene vedkommende får, men en negativ nytte av ulikheten som ligger i at den andre får 60 kroner mer. Denne negative nytten kan dominere nytten av de 20 kronene og føre til at tilbudet avvises.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Men dette kan ikke være hele historien. Falk et al. (2003) viser at dersom en pott på 10 enheter kan fordeles bare på to måter (8,2) eller (2,8), (respondentens andel er sist i parentesen) så vil et forslag som gir respondenten bare 20% likevel aksepteres av de fleste. Om alternativene er (8,2) og (5,5) blir derimot (8,2) avvist av flertallet. Det er altså ikke bare utfallet som betyr noe, men hva alternativet var. Falk et al. tolker det som et uttrykk for at intensjonene er viktig - en ujevn fordeling kan være akseptabel om forslagsstiller ikke hadde bedre alternativ. Når (5,5) ikke var et alternativt, blir det ikke sett på som like uvennlig å tilby (8,2).

Heller ikke forvitringen av samarbeid i fellesgodespillet kan forklares med ulikhetsavversjon. Andre forklaringer kan være at gjensidighet er rasjonelt i gjentatte interaksjonen med andre mennesker, men at samme strategi også brukes i engangsspill på grunn av begrenset rasjonalitet. For å forklare denne vil jeg først minne om folketeoremet (Aumann, 1959). Om to spillere spiller fangenes dilemma, her har jeg satt opp en variant hvor spillerne velger mellom samarbeid eller en egennyttig handling.

<table>
<thead>
<tr>
<th></th>
<th>Samarbeid</th>
<th>Egennyttig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samarbeid</td>
<td>1,1</td>
<td>-1,2</td>
</tr>
<tr>
<td>Egennyttig</td>
<td>2,-1</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Tabell 5.1

Det er nå lett å se at uansett hva den andre gjør, så er den egennyttige handlingen den som gir størst utbetaling. Dilemmaet er at de begge velger den egennyttige handlingen og får 0 utbetalt, mens de kan få 1 begge to om de samarbeider. Aumann påpekte at om spillet gjentas uendelig mange ganger så kan samarbeid være en likevekt. En mulig strategi som realiserer et slikt samarbeid er det Axelrod senere kalte tit-for-tat. Tit-for-tat strategien starter med samarbeid første gang og for hver ny repetisjon av fangenes dilemma spiller en det den andre spilte i forrige repetisjon. Om to spillere med tit-for-tat strategier møtes vil de samarbeide for alltid. Men om strategien møter noen som prøver å opptre egennyttig vil den svare tilbake med samme mynt, helt til den andre 'angerer' og samarbeider ensidig engang, deretter kan de fortsette å samarbeide.
Axelrod sendte ut en generell invitasjon til å lage et dataprogram som implementerte en strategi for hvordan en skulle spille i et gjentatt fangenes dilemma. Han fikk inn hundrevis av strategier fra ulike folk, alt fra professorer med spillteori som spesialitet til datanerder som fant dette som en morsom utfordring. Alle strategiene spilte så mot hverandre i en slags turnering, der de ble satt sammen i par og spilte en gjentatt utgave av fangenes dilemma, og de så hvilke program som jevnt over gjorde det godt og hvem som gjorde det dårlig. I neste runde var så antallet kopier av hvert program bestemt av hvor godt det hadde gjort det i forrige runde, en slags etterligning av hvordan evolusjonen foregår. Ganske fort ble en stor andel av "populasjonen" tit-for-tat kopier, bare noen promiller av andre strategier var igjen etter noen tusen runder (Axelrod 1981; Axelrod og Hamilton 1984).

Tit-for-tat strategien kan gi en forklaring på gjensidighet i menneskers adferd generelt, da vi som oftest møtes igjen og i den forstand spiller gjentatte spill. Men spillene i laboratoriet er engangsspill og en tilstrekker anonymitet slik at spillerne ikke kan vite hvem som gjorde hva. Spillerne kan derfor ikke reagere på urettferdige handlinger etter at de har forlatt eksperimentet, og samarbeid lønner seg da ikke i et engangsspill. Men kombinert med begrenset rasjonalitet kan det gi en forklaring på adferden i eksperimenter: spillerne oppfører seg ikke optimalt i situasjoner som er langt fra det de situasjoner har erfaring med utenfor lab'en og de bruker i stedet en adferd som er rasjonell i normale situasjoner. Og normale situasjoner er gjentatte spill.

Evolusjonen av moral og særlig resiprositet som vi er opptatt av her, kan vi også studere ved å se på andre arter og særlig arter som ligger nær i evolusjonshistorien. I boka "The age of Empathy" diskuterer de Waal (2009) grunnlaget for moral med utgangspunkt i studier av aper, særlig de to artene som genetisk er nærmest mennesket - bonobo og sjimpanser. De Waal argumenterer for at utgangspunktet for moral er evnen mange dyr har til å etterligne hverandre. Vi ser etterligning i insekter som svermer eller for å ta et nærmere eksempel: når en gjesper smitter det til de andre i rommet (også blant sjimpanser er gjesp smittsomt). Denne evnen til å etterligne andre har blitt videreutviklet til å etterligne følelsene. Han mener dette er særlig viktig for

17 Vi skilte lage med gorillaer for ca 7,5 millioner år siden, og med bonobo og sjimpanse for ca 5,5 millioner år siden. Bonobo og sjimpanse igjen skilte lag for om lag 2,5 millioner år siden.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

...pattedyrmødre som trenger å skjønne hvordan ungene har det for å kunne hjelpe dem. Han viser til mange observasjoner både med aper og andre dyr (bl.a. elefanter og delfiner) hvor de yter hjelp som bare er mulig om de kan skjønne hvordan situasjonen oppleves for den som trenger hjelp. Men ikke alle arter har utviklet denne evnen til å føle det de andre føler, noe som kan få katastrofale følger når en mor ikke er i stand til å ta barnets perspektiv. de Waal forteller om noen aper som har lært å nyte varme kilder men hvor mødrene ikke skjønner at når de selv puster normalt så trenger det ikke bety at barnet som henger på ryggen får puste (barnet kan være under vann).

Denne teorien om at etterligning er den biologiske basisen for moral støttes av nevrologiske studier, og særlig påvisningen av såkalte speilnevroner. I en pause i et laboratorium tok en av forskerne en peanøtt mens en ape fortsatt var koblet opp til en hjerneskanner. De så da at de samme områdene i hjernen lyste opp når forskeren tok en peanøtt som når apen selv tok en peanøtt. Mer systematiske studier etterpå bekreftet funnet: Det er områder av hjernen som reagerer tilsvarende når vi selv opplever noe som når vi ser noen annen oppleve det samme. (Frith, 2006, Ch 6). Disse nevronene kalles speilnevronene er altså noe av det som gir oss evnen til empati.

Evnen til å føle det samme som andre er en forutsetning for moralsk adferd, men den kan brukes både positivt og negativt.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

5.4.4 Gruppeadferd

At vi tar inn over oss lidelsene til individer som er både langt unna og tilhørende andre kulturer ser vi gjennom hvordan innbetalinger til hjelpeaksjoner i fjerne katastrofeområder. Vi kan også se folk lukke øynene eller snu seg bort fra lidelsen som vises på et kinderrett for å slippe å ta den inn over seg, selv når de vet at den som lider er en fiktiv skikkelse. Det er derfor grunn til å tro at denne effekten gjelder over nasjonsgrenser og mellom folkegrupper. Eksempelet over om hvordan albanere og kroater tok blodhevn når Nato hadde vunnet over serberne tyder på at resiprositet er noe som gjelder videre enn mellom enkeltindivider. Om en slik adferd også skulle gjelde for land, kan en ensidig reduksjon fra et land sin side være som en gave som må gjengjeldes.

5.4.5 Hjelper det å være foregangsland?

Vi har så langt fokusert på spørsmålet om hvordan ensidige utslippsreduksjoner fra ett land reduserer utslippene fra andre land. Et annet spørsmål er om ensidige reduksjoner kan begrunnes uten referanse til et slikt strategisk motiv. Det at vi føler noe av den
samme smerten som de som lider føler, tilser at vi har interesse av å unngå andres lidelser. Vi kan være enda mer interessert i å unngå at andre lider som følge av et problem vi har en betydelig del av ansvaret for. Dette kan være et argument for ensidige reduksjoner uavhengig av hvordan andre vil reagere. Men denne medfølelsen er åpenbart ikke sterk nok til alene å løse problemet - da hadde det alt vært løst. Derfor blir det også relevant å spørre hvilken effekt det har på utslippene fra andre land.

Gjensidighet, tendensen til å gjengjelde gode handlinger med gode og dårlige med dårlige, er godt dokumentert i den eksperimentelle litteraturen, men detaljene i hvorfor adferden er slik er gjenstand for diskusjon. Studier av individers adferd gir et dårlig grunnlag for å trekke sterke konklusjoner om adferden til nasjoner, derfor er nettopp de underliggende mekanismene viktige. De ulike forklaringene har ulike implikasjoner for hva som er effekten av ensidige tiltak fra en spiller, ikke minst om det er snakk om et spill mellom nasjoner.

Om det er ulikhetsaversjon som forklarer gjensidighet i f.eks. ultimatumspillet, så er det neppe grunnlag for å trekke lærdommer fra slik gjensidighet i lab’en til nasjonal politikk. Når to individer deler 100 kroner i laben er all fokus på de 100 kronene. De har liten informasjon om øvrige inntekter til motspilleren, ultimatumspillet handler da bare om fordelingen av de 100 kronene. Men om et lite land som Norge eller Sverige gjør ensidige tiltak for å begrense CO$_2$ utslipp vil det ikke gi store endringer i levestandarden i dette landet, neppe så store at andre land føler de også må gjøre tiltak for å gjenopprette en likere global inntektsfordeling.

Implikasjonene av en forklaring basert på gjentatte spill og begrenset rasjonalitet er mer uklare. Om forsøkspersonene i lab’en oppfører seg som om de spilte et gjentatt spill når de faktisk spiller et engangsspill, så vil det neppe kunne overføres til land. Land er neppe så begrenset rasjonelle. På den andre siden, nasjonale utslipp er ikke anonyme, og de samme nasjonene vil spille det samme miljøspillet i mange år framover. Det er faktisk et gjentatt spill, og teorien for gjentatte spill er relevant. Det finnes så mange likevektsstrategier, ikke bare samarbeid/egennytte, og en analyse ligger utenfor rammene av denne artikkel.

Endelig har vi den mer biologiske forklaring: vi deler andres gleder og sorger, men har også en sterk aversjon mot å bli utnyttet. Responsen på katastrofer andre steder i
verden viser at vi også deler sorger også med mennesker i andre kulturer og verdensdeler, som tilsier at vi kan generalisere til nasjonsnivå. Dette skulle gi grunnlag for samarbeid. Men samarbeidet krever gjensidighet. Når vi føler noen har behandlet oss urettferdig er vi villige til å tåle et tap for å gi de andre en rimelig straff. Også i denne sammenhengen er vi avhengig av å sette oss inn i andres opplevelse av sorg og glede for å vite hvilken straff som svir. Hvor mye av denne delen av adferden som lar seg generalisere til nasjonsnivå er mindre klart. Om en tilsvarende gjensidighet gjelder mellom nasjoner vil det, som diskutert i forbindelse med fellesgodspillet, undergrave samarbeid. Om funnene fra lab’en lar seg generalisere til nasjoner vil samtidig sjenerøsitet fra en part føre til større bidrag fra andre. Det skulle tilsi at om et land går foran med utslippsreduksjoner utover det de er forpliktet til, kan det føre til mer velvilje fra andre.

Et siste spørsmål er hvor store effekter kan være, og vil det være nok til å forsvare ensidige initiativ. I tillitsspillet lønner det seg oftest å gi mye, også i ultimatumspillet tjener en på å være sjenerøs. I fellesgodespillene er det ukjert om en mer sjenerøs giver tjener det inn igjen på at andre blir mer sjenerøse. Men på dette punktet er uansett forskjellen på land og enkeltindivider for stor til at det gir mening å generalisere.
5.5 Mulige virkninger på forhandlinger om en klimaavtale

De fleste vil være enige om at dersom vi skal oppnå ambisiøse klimamål, kreves det en internasjonalt klimaavtale med bred oppslutning. Dette er bl.a vist i avsnitt 5.1 hvor vi så hvor viktig det var at alle land med betydelig utslipp må delta i internasjonalt koordinerte utslippsreduksjoner. I dette kapittelet skal vi diskutere mulige årsaker til at det er vanskelig å oppnå en god internasjonalt klimaavtale, og hvilken betydning det kan ha at ett eller flere land uavhengig av en avtale fører en ensidig ambisiøs klimapolitikk slik f eks Norge og Sverige gjør.

5.5.1 Klimaavtaler og gratispassasjerer

For å rendyrke poenget om gratispassasjerer antas alle land å være like. Landene bestemmer først om de vil være med i en koalisjon eller ikke. Landene som er medlemmer av koalisjonen bestemmer deretter hvor mye de vil kutte sine utslipp.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Anta at teorien over gir som resultat at k land vil samarbeide. Hva skjer med dette resultatet hvis vi i stedet for å anta at alle land handler ut fra snever egeninteresse antar at en liten gruppe av h land (h<k) velger betydelige utslippskutt uansett hvor mange land som slutter seg til koalisjonen og uansett utslippskuttene i de øvrige koalisjonslandene? Det er mest nærliggende å tenke seg at disse h landene vil være medlemmer av koalisjonen. Dersom disse landene holder fast på sine store utslippskutt uavhengig av hvor stor resten av koalisjonen er, vil forskjellen i samlede utslippskutt for en koalisjon av størrelse k og størrelse k-1 trolig bli mindre enn den ville blitt med de opprinnelige forutsetningene om koalisjonslandenes adferd. Et land som vurderer å stå utenfor en koalisjon av størrelse k vil derfor tape mindre i form av lavere klimagevinst enn det ville tapt med de opprinnelige forutsetningene. Gevinsten av unngåtte kostnader ved å stå utenfor koalisjonen er imidlertid den samme. Dermed styrkes insentivet til å være gratispassasjer, noe som kan innebærer at med de nye
forutsetningene (h land velger lave utslipp uansett) kan likevektstørrelsen på koalisjonen bli mindre.

Konklusjonen fra analysen over er at ensidige utslippskutt fra en liten gruppe av land ikke nødvendigvis bidrar til at flere land slutter seg til en internasjonal klimaavtale. Tvert i mot så vi at det motsatte kunne være tilfelle: Når noen land velger store utslippskutt uavhengig av utfallet av klimaforhandlinger, kan dette styrke insentivet til å være gratispassasjer, og det kan bli vanskeligere å oppnå et samarbeid mellom mange land. En bør imidlertid være forsiktig med å trekke for bastante konklusjoner. Selv om drøftingen over er basert på en teori om samarbeid som er mye brukt i litteraturen, finnes det også andre teorier. En kan ikke utelukke at enkelte andre av disse teoriene kan gi andre resultater vedrørende konsekvensen av at noen land ensidig kutter sine utslipp uavhengig av hva andre land gjør.

5.5.2 **Ensidige utslippskutt og utfallet av klimaforhandlinger**

Anta to land A og B. Totalvelferden til land j (j=A,B) er gitt ved \(W_j \) som er et samlemål på både snever økonomisk og annen velferd (spesielt miljø). Dette velferdsmålet avhenger selvsagt av en rekke faktorer. Her fokuserer vi bare på to faktorer, nemlig egne utslipp og sum utslipp fra begge land. La utslippet i land j være gitt ved \(e_j \). Vi antar altså at

\[
W_j = W_j(e_j, e_A + e_B),
\]

som antas stigende i første argument (fordi reduserte utslipp har en økonomisk kostnad) og avtagende i andre argument (høy samlede utslipp gir en negativ miljøeffekt). Anta først at land A uten noen avtale vil ta \(e_B \) som gitt og velge \(e_A \) så \(W_A \) blir så stor som mulig. Tilsvarende for land B. Dette gir bestemte utslipp i hvert av landene, og dermed også bestemt nivåer på \(W_A \) og \(W_B \). Disse nivåene svarer til punktet D i figur 5.6.

Den ukoordinerte fastleggingen av utslipp beskrevet over er ikke effektiv: Det er mulig å øke både \(W_A \) og \(W_B \) ved en koordinert reduksjon i begge lands utslipp sammenlignet med utslippene svarende til punkt D. En slik koordinert utslippsreduksjon kan bringe...
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

oss til de effektive utslippskombinasjonene, som er langs kurven EF i figur 5.6. Nøyaktig hvor på kurven en vil havne avhenger av hvor mye hvert av landene reduserer sine utslipp. Jo lengre opp og til venstre på kurven EF en er jo lavere utslipp har land A og jo høyere utslipp har land B. Anta at en klimaavtale gir et effektivt resultat, dvs et utfall et sted på linjen EF. Ulike forhandlingsteorier vil gi ulike prediksjoner på nøyaktig hvor en vil havne på kurven EF. Men de aller fleste (alle?) teoriene vil si at forhandlingsutfallet N i figuren vil avhenge av beliggenheten av det ukoordinerte utfallet D, og ligge lengre opp og til venstre jo lengre nordvest punktet D ligger.

Anta nå at land A før en klimaavtale er på plass bestemmer seg for å redusere sine utslipp i forhold til punktet D, selv om det gir en lavere verdi på \(W_A \) gitt utslippene land B har valgt. Dette gir lavere samlede utslipp, og øker dermed verdien på \(W_B \). Denne adferden til land A flytter dermed det ukoordinerte utfallet fra D til et punkt D' nordvest for D. Men dette vil i neste omgang påvirke forhandlingsutfallet, som fra drøftingen over vil bli i et punkt N' i stedet for N. Land A vil altså komme dårligere ut som følge av sine ensidige og ubetingede utslippskutt, mens land B vil komme bedre ut. Hva med samlede utslipp? De vil normalt avhenge av hvor på kurven EF en er, men det er ikke opplagt i hvilken retning samlede utslipp endrer seg når en beveger seg opp og til venstre på linjen EF.\(^{18}\)

Vi kan konkludere med at ensidige og ubetingede utslippskutt fra en gruppe av land kan tenkes å påvirke utfallet av klimaforhandlinger. Det er imidlertid ikke opplagt om de fremforhandlede samlede utslipp blir lavere enn hvis landene ikke hadde ensidig redusert sine utslipp.

\(^{18}\) I Hoel (1992) er dette analysert i mer detalj for tilfellet hvor de kryssderiverte av \(W_j \)-funksjonene er null.
5.6 Oppsummering av kapittel 5

Dersom et lite land ensidig kutter sine utslipp vil den direkte virkningen på klimautviklingen være tilnærmet lik null. Virkningen vil også være ubetydelig selv om f eks USA eller EU gjennomfører betydelige utslippskutt. I kapittelet redegjøres det for virkningen av utslippskutt for de landene som har påtatt seg utslippsbegrensninger i Kyoto-avtalen (Kyoto-landene), som i dag står for ca 30 % av de globale CO₂-utslippene. Det antas at utslippene i denne gruppen av land reduseres med 25 % innen 2025, med 80% innen 2050, og med 98 % innen 2100. Utslippene i denne gruppen av land reduseres ytterligere og er nær null gjennom det 22. århundre. Selv med slike dramatiske utslippskutt blir temperaturøkningen bare 0,18 °C lavere i 2100 og 0,22 °C lavere i 2200 enn den ville blitt uten utslippskuttene. Dette gjelder under forutsetning av at utslippskuttene i disse landene ikke påvirker utslippene i resten av verden.

På bakgrunn av ovenstående blir det i resten av kapittelet sett på mulige indirekte virkninger av en ambisiøs klimapolitikk i et lite land.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

En mulig viktig indirekte virkning av ensidige utslippskutt er at slike kutt kan ha betydning for utviklingen av ny klimavennlig teknologi. Steng klimapolitikk i ett land kan gi raskere utvikling av klimavennlig teknologi i dette landet. På grunn av kunnskapsoverføringer mellom land kan dette også gi en positiv utvikling av klimavennlig teknologi også i andre land. Dette kan igjen gi lavere utslipp i andre land, siden kostnadene knyttet til utslippsreduksjoner vil gå ned som følge av den nye teknologien.

Selv om en slik teknologi Effekt kan være til stede, er det vanskelig på vite hvor stor denne er. I en studie diskutert i kapittelet konkluderes det med at denne effekten i noen tilfeller kan være tilstrekkelig stor til at den mer enn oppveier den motsatte virkningen gjennom karbonlekkasje. Et viktig forhold som ikke fanges opp av empiriske studier av dette fenomenet er at virkningen kan være diskontinuerlig: Med betydelig sannsynlighet vil teknologiutviklingen i landet med streng klimapolitikk ha beskjeden betydning for utslippene i andre land. Det er imidlertid en positiv sannsynlighet for at det i landet med streng klimapolitikk kommer et teknologisk gjennombrudd som kan bety ganske mye for utslippsett utviklingen i andre land. Dette er likevel i seg selv ikke et sterkt argument for ensidig streng klimapolitikk, da sannsynligheten for et slikt teknologisk gjennombrudd kan være svært liten selv om den er positiv.

I det meste av den økonomiske litteraturen om klimapolitikk er det lagt til grunn at alle land er rasjonelle aktører som handler ut fra egeninteresse. I den senere tid er det en
betydelig litteratur som viser at denne forutsetningen i mange situasjoner passer dårlig for adferden til enkeltpersoner, og da kanskje også for land. Dette er utførlig diskutert i kapittelet. I litteraturen om sosiale preferanser er det gitt en god dokumentasjon på at individer ofte vil gjengjelde gode handlinger med gode og dårlige med dårlige. Imidlertid er detaljene om hvorfor adferden er slik fortsatt gjenstand for betydelig diskusjon. Studier av individens adferd gir et dårlig grunnlag for å trekke sterke konklusjoner om adferden til nasjoner, derfor er nettopp de underliggende mekanismene viktige. De ulike forklaringene har ulike implikasjoner for hva som er effekten av ensidige tiltak fra en spiller, ikke minst om det er snakk om et spill mellom nasjoner. Teorien gir heller ingen antydning om hvor sterke effekter av denne typen kan være.

I kapittelet er det også diskutert mulige årsaker til at det er vanskelig å oppnå en god internasjonal klimaavtale, og hvilken betydning det kan ha at ett eller flere land uavhengig av en avtale fører en ensidig ambisiøs klimapolitikk. Konklusjonen fra drøftingen er at ensidige utslippskutt fra en liten gruppe av land ikke nødvendigvis bidrar til at flere land slutter seg til en internasjonal klimaavtale. Tvert i mot kan det motsatte være tilfelle: Når noen land velger store utslippskutt uavhengig av utfallet av klimaforhandlinger, kan dette styrke insentivet til å være gratispassasjer, og det kan bli vanskeligere å oppnå et samarbeid mellom mange land. En bør imidlertid være forsiktig med å trekke for bastante konklusjoner. Drøftingen er basert på en teori om samarbeid som er mye brukt i litteraturen; imidlertid finnes det også andre teorier. En kan ikke utelukke at enkelte andre av disse teoriene kan gi andre resultater vedrørende konsekvensen av at noen land ensidig kutter sine utslipp uavhengig av hva andre land gjør.

Kapittelet gir også en kort diskusjon om hvordan ensidige og ubetingede utslippskutt fra ett land kan påvirke utfallet av forhandliner, gitt at det blir en fremforhandlet klimaavtale. Det konkluderes med at ensidige og ubetingede utslippskutt fra en gruppe av land som regel vil påvirke utfallet av klimaforhandlinger. Utfallet vil typisk påvirkes i en retning som innebærer at landene som gjennomfører ensidige og ubetingede utslippskutt før avtalens kommer på plass kommer dårligere ut enn de ville gjort uten slike utslippskutt. Når det gjelder virkningen av ensidige utslippskutt på de fremforhandlede samlede utslipp, konkluderes det med at det ikke er opplagt i hvilken retning de vil påvirkes.
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

5.7 Appendiks om karbonlekkasje

Utledning av ligning (5.1)

Vi ser først på verden som helhet. Vi antar følgende om miljøkostnadsfunksjonen:

\[M(x) = m_0 x + \frac{m}{2} x^2 \]

som gir følgende lineære marginale miljøkostnader:

\[v(x) = M'(x) = m_0 + mx \]

Kostnaden knyttet til reduserte utslipp er

\[C(x^0 - x) = \frac{c}{2} \cdot (x^0 - x)^2 \]

som gir følgende lineære marginalkostnader for utslippsreduksjoner

\[-C'(x^0 - x) = c \cdot (x^0 - x) \]

Fra kapittel 2 vet vi at optimum for verden er utslipp lik \(x^* \) hvor

\[c \cdot (x^0 - x^*) = m_0 + mx^* \]

Vi vil nå dele verden inn to grupper, et lite land A og resten av verden (B). Vi gjør dette på en måte som gjør at

- det globale optimum for samlede utslipp er upåvirket av inndelingen
- den globalt optimale utslippsreduksjonen i prosent av utslipp uten tiltak er lik for de to landene

Miljøkostnadsfunksjonen er upåvirket av inndelingen av verden i to land. Men vi må spesifisere kostnadsfunksjonen for hvert land. Vi gjør dette som følger:

\[C_A(\beta x^0 - x) = \frac{c}{2\beta} \cdot (\beta x^0 - x)^2 \]

for land A, og
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

\[(A.7) \quad C_B((1-\beta)x_0 - x) = \frac{c}{2(1-\beta)} \cdot ((1-\beta)x_0 - x)^2\]

for resten av verden. Her er \(\beta x_0\) BaU-utslippene i land A og \((1-\beta)x_0\) BaU-utslippene i resten av verden.

De tilhørende marginalkostnadsfunksjonene er lineære:

\[(A.8) \quad -C_A'(x_0 - x_A) = c \cdot (x_0 - \frac{x_A}{\beta})\]

\[(A.9) \quad -C_B'(x_0 - x_B) = c \cdot (x_0 - \frac{x_B}{1-\beta})\]

I et globalt optimum vil utslippene være bestemt slik at disse marginalkostnadene er like i de to landene, og begge like med de marginale miljøkostnadene gitt ved (A.2):

\[(A.10) \quad c \cdot (x_0 - \frac{x_A}{\beta}) = m_0 + m \cdot (x_A + x_B)\]
\[(A.11) \quad c \cdot (x_0 - \frac{x_B}{1-\beta}) = m_0 + m \cdot (x_A + x_B)\]

Multipliserer vi disse to ligningene med hhv \(\beta\) og \(1-\beta\) og summerer får vi

\[(A.11) \quad c \left(x_0 - (x_A + x_B)\right) = m_0 + m(x_A + x_B)\]

Sammenligner vi med (A.5) ser vi at vi får \(x_A + x_B = x^*\), uavhengig av \(\beta\). Fra A9 ser vi også at

\[\frac{x_A}{\beta} = \frac{x_B}{1-\beta}\]
\[\frac{x_A}{x_B} = \frac{\beta}{1-\beta}\]

Forholdet mellom utslippene i det globale optimum er altså likt med forholdet under BaU.

Anta nå at det ikke er noen internasjonal avtale, og at resten av verden velger utslipp slik at deres marginalkostnader av utslippsreduksjoner er lik \(\alpha v\). Dette gir
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

\[c \cdot \left(x^0 - \frac{x_B}{1-\beta} \right) = \alpha \left[m_0 + m \cdot (x_A + x_B) \right] \]

Denne ligningen forteller oss hvordan utslippene i resten av verden (xR) avhenger av utslippene i land A (xA). Løser vi ligningen mhp xB og deriverer mhp xA finner vi

\[\text{(A.12)} \quad L_1 = -\frac{dx_B}{dx_A} = \frac{\alpha(1-\beta)m}{\alpha(1-\beta)m+c} \]

Utledning av ligning (5.4)

Fra likevektsbetingelsen \(S(p) = (1-\beta)D(p) + \beta D(p+t) \) følger det umiddelbart at (når t=0 initialt)

\[\text{(A.13)} \quad \frac{dp}{dt} = -\frac{\beta D'}{S'-D'} < 0 \]

Videre har vi

\[-\frac{d(1-\beta)D(p)}{dt} = -(1-\beta)D' \frac{dp}{dt} \]

og

\[\frac{d\beta D(p+t)}{dt} = \beta D' \frac{dp}{dt} + \beta D' \]

Uttrykket \(L_2 \) i 5.2.2 er forholdet mellom disse to størrelsene, når vi setter inn fra (A.13) finner vi derfor

\[\text{(A.14)} \quad L_2 = \frac{1-\beta}{\beta} \frac{dp}{dt} = \frac{1-\beta}{\beta} \frac{-\beta D'}{\beta D' + S' - D'} = \frac{(1-\beta)(-D')}{\beta D' + S' - D} \]

Etterspørselselastisiteten målt positivet er definert som \(\delta = -D' p / D \) og tilbudselastisiteten er definert som \(\sigma = -S' p / S \). Siden \(S = D \) kan derfor (A.14) omskrives til
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

\[L_2 = \frac{(1-\beta)\delta}{\sigma + (1-\beta)\delta} \]

Utledning av ligning (5.7)

Se på et lite land A og resten av verden B. Utslippene knyttet til et bestemt konkurranseutsatt produkt er hhv

\[u^B = H(1-\beta)S(p) \]
\[u^A = hH\xi(c)\beta S(p-c) \]

Uten noen utslippsreduserende tiltak er totalt tilbud lik \(S(p) \). Land A antas å stå for en andel \(\beta \) av dette tilbudet, og land A innfører klimatiltak som gir dette landets tilbud et negativt skift av samme størrelse som en prisreduksjon lik \(c \). I resten av verden er utslippet lik \(H \) per produsert enhet, mens utslippet per produsert enhet i land A før tiltaket er \(hH \). Her kan \(h \) være lik, mindre enn eller større enn 1. Funksjonen \(\xi(c) \) sier hvor mye utslipp per produsert enhet blir redusert i land A som følge av tiltaket. Vi antar \(\xi(0) = 1 \) og \(\xi'(c) < 0 \).

Raten for karbonlekkasje, \(L_3 \), er som før definert som utslippsøkningen i resten av verden dividert med utslippsreduksjonen i land A:

\[L_3 = \frac{\frac{du^B}{dc}}{\frac{du^A}{dc}} = \frac{du^B}{du^A} \]

Fra ligningene over følger det at (når \(c=0 \) initialt)

\[\frac{du^B}{dc} = H(1-\beta)S'\frac{dp}{dc} \]
\[\frac{-du^A}{dc} = -hH\beta \left[\xi'S + S'\frac{dp}{dc} - S' \right] \]

som gir
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

\[L_3 = -\frac{1 - \beta}{h\beta} \frac{S', dp}{dc} \frac{\xi' S + S', dp}{dc} - S' \]

Vi definerer

\[\mu = \frac{\xi', c}{\xi} \frac{\xi}{-S', c} \frac{S}{S} \]

Denne størrelsen sier med hvor mange prosent utslipp per produsert enhet går ned for et klimatiltak som reduserer produksjonen av godet med 1%. Når \(c = 0 \) og \(\xi = 1 \) initiatl følger det at \(\xi' S = -\mu S' \). Vi setter dette inn i uttrykket for \(L_3 \) og finner

\[L_3 = -\frac{1 - \beta}{h\beta} \frac{S', dp}{dc} \frac{S', dp}{dc} - (1 + \mu)S' \]

Vi finner nå \(dp / dc \) fra likevektsbetingelsen \(\beta S(p - c) + (1 - \beta)S(p) = D(p) \):

\[\frac{dp}{dc} = \frac{\beta S'}{S' - D'} > 0 \]

Setter vi det inn i uttrykket over for \(L_3 \) finner vi etter litt regning

\[L_3 = -\frac{(1 - \beta)\sigma}{h[1 + \mu - \beta]\sigma + (1 + \mu)\delta} \]

hvor \(\delta \) er etterspørselselastisiteten etter det konkurranseutsatte produktet (målt positivt) og \(\sigma \) er tilbudselastisiteten for det samme produktet.
6 Konkluderende merknader

Hvilken rolle kan et lite land spille i klimapolitikken? Bør et lite land føre en mer ambisiøs klimapolitikk enn internasjonale avtaler krever? Disse spørsmålene er drøftet i denne utredningen. Klimapolitikken til et lite land har neglisjerbar direkte virkning på klimautviklingen. Dette er ikke overraskende for små land som Norge og Sverige; mer overraskende er det kanske at det samme er tilfellet for en landgruppe som f eks EU. Dette faktum, kombinert med at det er kostnader knyttet til å føre en klimapolitikk som er mer ambisiøs enn internasjonale avtaler tilsier, reiser spørsmålet om hvorfor et lite land skulle ønske å føre en slik ambisiøs politikk. Det er to hovedgrunner til at et lite land kan ønske å føre en ambisiøs politikk til tross for kostnadene og til tross for tilnærmet null direkte klimavirkning:

a) En kan mene at en ensidig ambisiøs klimapolitikk kan ha indirekte virkninger slik at den bidrar til å øke sannsynligheten for at også andre land etter hvert vil føre en mer ambisiøs klimapolitikk

b) En kan mene at et rikt land har en moralsk plikt til å føre en ambisiøs klimapolitikk, uavhengig av om andre land gjør det samme eller ikke

Utredningen har gitt en detaljert gjennomgang av mulig indirekte virkninger av en ambisiøs klimapolitikk. En slik indirekte virkning er karbonlekkasje. Dette er en indirekte virkning som går i "feil" retning: En strengere klimapolitikk i ett land bidrar til økte utslipp i andre land. Den empiriske litteraturen gir ikke noen entydig konklusjon om hvor sterk denne effekten er. En kan også argumentere for at størrelsen på karbonlekkasjen ikke er særlig relevant, siden virkningen på klimautviklingen er tilnærmet null enten en har ingen eller stor karbonlekkasje.

En potensielt viktig indirekte virkning av en ambisiøs klimapolitikk i ett land er at den kan gi raskere utvikling av klimavennlig teknologi i dette landet. På grunn av kunnskapsoverføringer mellom land kan dette gi en positiv utvikling av klimavennlig teknologi også i andre land. Dette kan igjen gi lavere utslipp i andre land, siden kostnadene knyttet til utslippsreduksjoner vil gå ned som følge av den nye teknologien. Det er vanskelig å anslå størrelsen på en slik effekt. Et viktig poeng er at det vil være en viss mulighet for at det i landet med streng klimapolitikk kommer et teknologisk
Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Rollen for liten land i klimaforandringer er viktig og av betydning for utviklingen av klimaforandringer i andre land. Dersom sannsynligheten for et slikt gjennombrudd regnes som svært lav, er dette likevel ikke et sterkt argument for ensidig streng klimapolitikk.

Enkelte har hevdet at en ambisiøs klimapolitikk i et land gjennom en "forbildeeffekt" vil påvirke andre land i positiv retning, slik at vi får økt sannsynlighet for at også andre land vil føre en mer ambisiøs klimapolitikk. Dette blir i utredningen drøftet med utgangspunkt i nyere adferdsteori. Teorien gir imidlertid få holdepunkter for å vite om det finnes slike effekter eller ikke, og eventuelt hvor sterke de er.

En kan ikke utelukke at ensidige og ubetingede utslippskutt fra ett land eller en gruppe av land vil påvirke sannsynligheten for at en oppnår en bred klimaavtale og/eller innholdet i en slik avtale. Utredningen finner imidlertid liten støtte for at det er positive indirekte virkninger av denne typen.

Det følger av drøftingen over at mulige indirekte virkninger av en ensidig ambisiøs klimapolitikk er svært usikre. Den indirekte virkningen gjennom utviklingen av klimavennlig teknologi er kanskje den minst usikre, selv om størrelsen også av den er usikker. Hvis en har stor tiltro til denne indirekte virkningen, kan dette være av betydningen for utformingen av klimapolitikken. En ambisiøs klimapolitikk i form av en høy generell utslippspris er det som tradisjonelt blir sett på som den mest kostnadseffektive utformingen av en ambisiøs klimapolitikk. Men hvis en viktig årsak til at en fører en ambisiøs klimapolitikk er et håp om teknologiutvikling som påvirker utslippene i andre land, kan det være grunn til å avvike fra en generelt utformet klimapolitikk i form av lik utslippspris for alle. For å fremme teknologiutviklingen kan det være grunn til å vri politikken i en retning som gir større sannsynlighet for utvikling av ny klimavennlig teknologi enn en generelt utformet klimapolitikk gir.

Selv om en har liten tro på at det finnes indirekte virkninger av typen drøftet over, kan et land ønske å føre en ambisiøs klimapolitikk av mer prinsipielle grunner, jfr. punkt b) over. I så fall er det nærliggende at den ambisiøse politikken utformes på en kostnadseffektiv måte med lik utslippspris for alle. Selv om årsaken til å føre en ambisiøs klimapolitikk først og fremst er av prinsipiell art, kan en håpe og tro at indirekte virkninger er til stede, slik at den ambisiøse politikken kan påvirke utslippene også i andre land. I så fall kan dette være en grunn til å avvike fra den generelt
utformede og kostnadseffektive politikken. Dersom en f eks tror at det er en mulig positiv indirekte virkning gjennom teknologiutvikling, er det også i dette tilfelle grunn til å vri politikken i en retning som gir større sannsynlighet for utvikling av ny klimavennlig teknologi enn en generelt utformet klimapolitikk gir.
Referanser

Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Cox, J. C. (2002), "Trust, reciprocity, and other-regarding preferences: groups vs. individuals and males vs. females". In R. Zwick and A. Rapoport (Eds.): Experimental Business Research, Springer.

Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

Klimapolitikk og lederskap – hvilken rolle kan et lite land spille?

NOU 2000:1, "Et Kvotesystem for Klimagasser".

Vista Analyse AS
er et samfunnsfaglig analyseselskap, i sin helhet eiet av medarbeiderne.
Våre medarbeidere har bred kompetanse fra forskning, utredning, rådgiving
og konsulentvirksomhet innen blant annet klima, miljø, energi, samferdsel,
næringspolitikk, næringslivsanalyser, konkurransepolitikk, kommuneøkonomi
og organisering av offentligvirksomhet.

Vi leverer faglige råd og utredninger i samspill med oppdragsgivers
egne ressurser. Ved behov benytter vi et velutviklet nettverk med
selskaper og ressurspersoner nasjonalt og internasjonalt.

Vista Analyse AS
Meltzersgate 4
0257 Oslo

Tlf: +47 40 00 63 02
vista-analyse.no